Núcleo Modelos Estocásticos de Sistemas Complejos y Desordenados

Propagation of critical behavior for unitary invariant plus GUE random matrices

Event Date: Nov 24, 2016 in Núcleo Modelos Estocásticos de Sistemas Complejos y Desordenados, Seminars

Abstract: It is a well known and celebrated fact that the eigenvalues of random Hermitian matrices from a unitary invariant ensemble form a determinantal point process with correlation kernel given in terms of a system of orthogonal polynomials on the real line. It is a much more recent result that the eigenvalues of the sum of such a random matrix with a matrix from the Gaussian unitary ensemble (GUE) also forms a determinantal point process, with the kernel given in terms of the Weierstrass transform of the original kernel. I’ll talk about the case in which the limiting distribution of...

Read More

TWO-VALUED ENSEMBLE OF THE GAUSSIAN FREE FIELD.

Event Date: Sep 15, 2016 in Núcleo Modelos Estocásticos de Sistemas Complejos y Desordenados, Seminars

ABSTRACT: The goal of this talk is to understand thin local sets of the continuous Gaussian free filed (GFF) in a domain of R^2, whose corresponding harmonic function takes only two values. We give a characterization of these sets and use it to show that in some sense they are maximal in a bigger class of local sets, where we only ask the function to be bounded. Important corollaries of this work are new constructions of the Conformal Loop Ensemble CLE_4 and a new perspective on the two known couplings between CLE_4 and the GFF. Joint work wiht JUHAN ARU and WENDELIN...

Read More

Limiting laws for some integrated processes

Event Date: Aug 11, 2016 in Núcleo Modelos Estocásticos de Sistemas Complejos y Desordenados, Seminars

Resumen: The study of limiting laws, or penalizations, of a given process may be seen (in some sense) as a way to condition a probability law by an a.s. infinite random variable. The systematic study of such problems started in 2006 with a series of papers by Roynette, Vallois and Yor who looked at Brownian motion perturbed by several examples of functionals. These works were then generalized to many families of processes: random walks, Lévy processes, linear diffusions… We shall present here some examples of penalization of a non-Markov process, i.e. the integrated Brownian motion, by its...

Read More

Phase Transitions on the Long Range Ising Models in presence of an random external field

Event Date: Jul 25, 2016 in Núcleo Modelos Estocásticos de Sistemas Complejos y Desordenados, Seminars

Resumen: We study the ferromagnetic one-dimensiosnal Random Field Ising Model with (RFIM) in presence of an external random field. The interaction between two spins decays as $d^{\alpha-2}$ where $d$ is the distance between two sites and $\alpha \in [0,1/2)$ is a parameter of the model. We consider an external random field on $\mathbb{Z}$ with independent but not identically distributed random variables. Specifically for each $i \in \mathbb{Z}$, the distribution of $h_i$ is $P[h_i=\pm \theta(1+|i|)^{-\nu/2}]$. This work, whose main goal is the study of the existence of a phase transition at...

Read More

The log-Sobolev inequality for unbounded spin systems on the lattice. & Scaling limit of subcritical contact process.

Event Date: Jun 13, 2016 in Núcleo Modelos Estocásticos de Sistemas Complejos y Desordenados, Seminars

PRIMERA PARTE: Expositor: Ioannis Papageorgiou (UBA) Titulo: The log-Sobolev inequality for unbounded spin systems on the lattice. Resumen: A criterion will be presented for the log-Sobolev inequality for unbounded spin systems on the lattice with non-quadratic interactions. This is a joint work with Takis Konstantopoulos (Uppsala) and James Inglis (INRIA). Furthermore, in the case of quadratic interactions, a perturbation result for the inequality will be presented. SEGUNDA PARTE: Expositora: Aurelia Deshayes (UBA) Titulo: Scaling limit of subcritical contact process Resumen: I will talk...

Read More

Percolation in hyperbolic space: the non-uniqueness phase.

Event Date: Nov 30, 1999 in Núcleo Modelos Estocásticos de Sistemas Complejos y Desordenados, Seminars

Resumen: We consider Bernoulli percolation on Cayley graphs of reflection groups in the 3-dimensional hyperbolic space H^3 corresponding to a large class of Coxeter polyhedra. In such setting, we prove the existence of a non-empty no-uniqueness percolation phase, i.e., that p_c<p_u. It means that for some values of the percolation parameter there are a.s. infinitely many infinite components in the percolation subgraph. If time permits, I will present a sketch for the case of a right angled compact polyhedron with at least 18 faces.

Read More