Dynamical Systems

Equidistribution of dilated curves.

Event Date: Jul 10, 2017 in Dynamical Systems, Seminars

Resumen:    Consider a light source located in a polynomial room. It is a classic question whether the whole room is illuminated by the light. This question was recently settled by Lelievre, Monteil and Weiss. In this talk, we study the variation on the illumination problem introduced by Chaika and Hubert in the context of closed curves on nilmanifolds. We give necessary and sufficient conditions for a nilmanifold being illuminated by a curve.

Read More

Quantitative multiple recurrence for two and three transformations.

Event Date: Apr 10, 2017 in Dynamical Systems, Seminars

Abstract:  In this talk I will provide some counter examples for quantitative multiple recurrence problems for systems with more than one transformation.  For instance, I will show that there exists an ergodic system $(X,\mathcal{X},\mu,T_1,T_2)$ with two commuting transformations such that for every $\ell < 4$ there exists $A\in \mathcal{X}$ such that  \[ \mu(A\cap T_1^n A\cap T_2^n A) < \mu(A)^{\ell} \]  for every $n \in \mathbb{N}$.   The construction of such a system is based on the study of “big” subsets of $\mathbb{N}^2$ and $\mathbb{N}^3$  satisfying...

Read More

TOPOLOGICAL DYNAMICS OF PIECEWISE Λ-AFFINE MAPS OF THE INTERVAL

Event Date: Apr 17, 2017 in Dynamical Systems, Seminars

ABSTRACT: Let 0 < a < 1, 0 ≤ b < 1 and I = [0,1). We call contracted rotation the interval map φa,b : x ∈ I → ax+b mod1. Once a is fixed, we are interested in the dynamics of the one-parameter family φa,b, where b runs on the interval interval [0, 1). Any contracted rotation has a rotation number ρa,b which describes the asymptotic behavior of φa,b. In the first part of the talk, we analyze the numerical relation between the parameters a, b and ρa,b and discuss some applications of the map φa,b. Next, we introduce a generalization of contracted rotations. Let −1 < λ < 1 and f...

Read More

The group of reversible Turing machines and the torsion problem for $\Aut(A^{\mathbb{Z})$ and related topological fullgroups.

Event Date: Dec 19, 2016 in Dynamical Systems, Seminars

Abstract:   We introduce the group $RTM(G,n,k)$ composed of abstract Turing machines which use the group $G$ as a tape, use an alphabet of $n$ symbols, $k$ states and act as a bijection on the set of configurations. These objects can be represented both as cellular automata and in terms of continous functions and cocycles. The study of this group structure yields interesting results concerning computability properties of some well studied groups such as $\Aut(A^{\mathbb{Z})$ and the topological full group of the two dimensional full shift. More precisely, given a finitely generated group $G...

Read More

New techniques for pressure approximation in Z^d shift spaces

Event Date: Oct 19, 2016 in Dynamical Systems, Seminars

ABSTRACT:   Given a Z^d shift of finite type and a nearest-neighbour interaction, we present sufficient conditions for efficient approximation of pressure and, in particular, topological entropy. Among these conditions, we introduce a combinatorial analog of the measure-theoretic property of Gibbs measures known as strong spatial mixing. The approximation techniques make use of a special representation theorem for pressure that may be of independent interest. Part of this talk is joint work with Stefan Adams, Brian Marcus, and Ronnie...

Read More

Piecewise contraction maps and its applications

Event Date: Apr 28, 2016 in Dynamical Systems, Seminars

Abstract:   Our talk concerns dynamical systems which are defined by piecewise contraction maps (PC maps). There is a large literature which deals with the dynamical behavior of PC maps defined on convex subsets of Euclidean spaces in different contexts. Our aim is to show that, under certain conditions, a typical PC map, in the measure theoretical sense of the parameter space, is asymptotically periodic which means that the map has finitely many periodic orbits and every orbit converges to a periodic orbit. Our setup is the following: We fix an Iterated Function System {φ1, . . . ,...

Read More