The KPZ fixed point



I will describe the construction and main properties of the KPZ fixed point, which is the scaling invariant Markov process conjectured to arise as the universal scaling limit of all models in the KPZ universality class, and which contains all the fluctuation behavior seen in the class. The construction follows from an exact solution of the totally asymmetric exclusion process (TASEP) for arbitrary initial condition. This is joint work with K. Matetski and J. Quastel.

Date: Oct 16, 2017 at 16:30 h
Venue: Sala de Seminarios Felipe Álvarez Daziano, ubicada en el Depto. de Ingeniería Matemática, Torre Norte, 5to piso de Beauchef 851.
Speaker: Prof. Daniel Remenik
Affiliation: Universidad de Chile
Coordinator: Prof. Daniel Remenik

Posted on Oct 11, 2017 in Núcleo Modelos Estocásticos de Sistemas Complejos y Desordenados, Seminars