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Introduction

2D SFTs and effective subshifts share many properties, as
pointed out by the Aubrun-Sablik theorem.
In this last part, we will speak about differences between SFTs
and effective subshifts.

(Kolmogorov) Complexity
Periodic points
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Complexity

The complexity px (n) of a point x is the number of different
patterns of size n.

Theorem (Durand-Levin-Shen [DLS08])

Every k-dimensional SFT contains a point x of complexity 2O(nk−1).
The bound is tight.
There are k-dimensional effective shifts where every point is of
complexity 2Ω(nk )

The theorem is still valid for sofic shifts rather than SFT (obvious).
The second part proves that the bound is tight in the first part, by
Aubrun-Sablik.
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Kolmogorov complexity

The Kolmogorov complexity K (w) of a word w is the size of the
smallest program that outputs w .
The exact definition does not really matter here.

If every pattern of size n of x is of Kolmogorov complexity less than c,
then px (n) ≤ 2c

(there are at most 2c programs of size less than c)

If x is computable, then for every pattern w of size n,
K (w) ≤ log px (n) + O(log n).

The program contains an integer i ≤ c and outputs the i-th pattern of
size n of x .
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The theorem

Theorem (Durand-Levin-Shen [DLS08])
Every 2-dimensional SFT contains a point x so that for all patterns w
of size n × n, K (w) = O(n).

How to prove it ?
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Lemma
For every n, there exists a globally admissible pattern w of size n × n
and of complexity K (w) ≤ cn + O(1) (where c depends only on the
SFT)

Proof :
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Lemma
For every n, there exists a globally admissible pattern w of size n × n
and of complexity K (w) ≤ cn + O(1) (where c depends only on the
SFT)

Proof :

n

nu

Start from any globally admissible
pattern u of size n × n
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Lemma
For every n, there exists a globally admissible pattern w of size n × n
and of complexity K (w) ≤ cn + O(1) (where c depends only on the
SFT)

Proof :

v Let v be the boundary of u.
It is a word of size 4n − 4.
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Lemma
For every n, there exists a globally admissible pattern w of size n × n
and of complexity K (w) ≤ cn + O(1) (where c depends only on the
SFT)

Proof :

v

w = f (v)

Given only v , we can find algorith-
mically a globally admissible w .

(Use your favorite deterministic al-
gorithm to fill the inside with valid
letters)
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Lemma
For every n, there exists a globally admissible pattern w of size n × n
and of complexity K (w) ≤ cn + O(1) (where c depends only on the
SFT)

Proof :

v

w = f (v)

Clearly K (w) ≤ K (v) + O(1).

And K (v) ≤ (4n − 4) log A + O(1)

That ends the lemma. However
subpatterns of w might be of big
complexity.
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Lemma
For every n, there exists a globally admissible pattern w of size n × n
so that for all subpatterns p of w, K (p) ≤ c|p|+ O(1) (where c
depends only on the SFT)

Proof :

E. Jeandel, CASD, Part IV: SFT vs effective subshifts 7/27



Lemma
For every n, there exists a globally admissible pattern w of size n × n
so that for all subpatterns p of w, K (p) ≤ c|p|+ O(1) (where c
depends only on the SFT)

Proof :

n

nu

Start from any globally admissible
pattern u of size n × n

E. Jeandel, CASD, Part IV: SFT vs effective subshifts 7/27



Lemma
For every n, there exists a globally admissible pattern w of size n × n
so that for all subpatterns p of w, K (p) ≤ c|p|+ O(1) (where c
depends only on the SFT)

Proof :

v Let v be the boundary of u.
It is a word of size 4n − 4.

E. Jeandel, CASD, Part IV: SFT vs effective subshifts 7/27



Lemma
For every n, there exists a globally admissible pattern w of size n × n
so that for all subpatterns p of w, K (p) ≤ c|p|+ O(1) (where c
depends only on the SFT)

Proof :

v

w1

Find algorithmically some globally
admissible w1
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Lemma
For every n, there exists a globally admissible pattern w of size n × n
so that for all subpatterns p of w, K (p) ≤ c|p|+ O(1) (where c
depends only on the SFT)

Proof :

Keep only the backbone
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Lemma
For every n, there exists a globally admissible pattern w of size n × n
so that for all subpatterns p of w, K (p) ≤ c|p|+ O(1) (where c
depends only on the SFT)

Proof :

Call recursively f on all four bound-
aries
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Lemma
For every n, there exists a globally admissible pattern w of size n × n
so that for all subpatterns p of w, K (p) ≤ c|p|+ O(1) (where c
depends only on the SFT)

Proof :

v

w = f (v)

Call recursively f on all four bound-
aries

Let’s call w = f (v) the result
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Lemma
For every n, there exists a globally admissible pattern w of size n × n
so that for all subpatterns p of w, K (p) ≤ c|p|+ O(1) (where c
depends only on the SFT)

Let p be a subpattern of w of size k × k

w

p
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Lemma
For every n, there exists a globally admissible pattern w of size n × n
so that for all subpatterns p of w, K (p) ≤ c|p|+ O(1) (where c
depends only on the SFT)

Let p be a subpattern of w of size k × k
By construction, w contains a grid of pat-
terns of complexity O(n/2i) for all i

w

p
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Lemma
For every n, there exists a globally admissible pattern w of size n × n
so that for all subpatterns p of w, K (p) ≤ c|p|+ O(1) (where c
depends only on the SFT)

Let p be a subpattern of w of size k × k
The four patterns are of size k ′ ≤ 2k for
some k ′.
To specify p, it is sufficient :

To describe the four patterns. This is
linear in their size by construction
To describe x and y . This is
logarithmic in x and y .
To describe the size of p. This is
logarithmic in k .

K (p) ≤ 4∗O(k ′) + 2 log k ′+ log k = O(k)

p

x y
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The Theorem

Theorem (Durand-Levin-Shen [DLS08])
Every 2-dimensional SFT contains a point x so that for all patterns w
of size n × n, K (w) = O(n).

For some c, we can build arbitrary large patterns w so that
K (p) ≤ c.|p| for every pattern p in w . The result follows by
compactness.
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The bound is tight

Theorem (Durand-Levin-Shen [DLS08])
There exists a k-dimensional effective shift so that for all points x, for
all patterns w of size n × n, K (w) = Ω(nk ).

Proof in 1D : Let Sp be the subshift that forbids all patterns w so that
K (w) < |w |/4 for |w | ≥ p

Sp is effective.
Sp is nonempty if p is big enough. Indeed, fix c = 1√

2
. Then∑

2k/4ck <∞

So that
∑

k≥p 2k/4ck < 2c − 1 for some p.

E. Jeandel, CASD, Part IV: SFT vs effective subshifts 10/27



Another difference between SFTs and effective shifts

Periodic points are another classical conjugacy invariant
In dimension 1, a point x is periodic of period p if

{q|∀i , xq+i = xi} = pZ

For a 1D SFT S, the set L = {p|∃x of period p} is well understood
L is always nonempty if S is nonemtpy.
L is always a semilinear set (finite unions of linear sets, of the form
c + bN)
comes for automata theory : Unary regular languages are
semilinear
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Effective shifts

What about effective shifts ?
There is a semialgorithm that halts if p is not a period
Test, for all (primitive) words w of size n, if ωwω 6∈ S
ωwω 6∈ S iff it contains one of the forbidden patterns (hence we
have only a semi algorithm)

Recall that a set L of integers is co-recursively-enumerable if
There is an algorithm that halts on input n iff n 6∈ L
Equivalently, there is an algorithm f that enumerates its
complement, cL = {f (n),n ∈ N}

The set of periods of a (1D) effective shift is
co-recursively-enumerable.
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Effective shifts

Theorem
For every co-recursively enumerable set L, there exists a (1D) effective
shift S so that the set of periods of S is exactly L.
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Proof

We start from S1 over {0,1, ]} that forbids :
F1 = {xyxyx , x ∈ {a,b}+, y ∈ {a,b}?}
F2 = {]u]v],u 6= v}

S1 is clearly effective.
What are periodic points for S1 ?

A periodic point of S1 must contain a ] symbol, due to F1.
A periodic point of S1 must be of the form . . . ]w]w]w . . . , due to
F2.
The period of a word is exactly the distance between two
consecutive ] symbols.

Furthermore, there exist words in S1 of any period p : consider
. . . ]w]w . . . where w is the first p − 1 letters of the Thue-Morse word.
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Proof

Now start from L a co-recursively-enumerable set, given by an
enumeration f of its complement

F3 = {]w],∃n ∈ N, |w | = f (n)− 1}

(we forbid two ] symbols to be at a distance m 6∈ L)

Then the set of periods of S forbidding F1,F2,F3 is exactly L.
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Higher dimensions

What happens in higher dimensions ?

First we have to define what is the period of a point p
The period of a point x is a lattice

Γx = {q ∈ Zd |∀i , xq+i = xi}

Hard to deal with.
The period of a point x is p if

Γx = pZd
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Multidimensional effective shifts

Theorem
The set of periods of any d-dimensional sofic (resp. effective) shift may
be any co-recursively enumerable set.

Uses a combination of the same idea and Aubrun-Sablik’s result.

What about SFTs ?
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Multidimensional SFTs

Let S be a SFT. To test if p is a period :
Test, for all patterns w of size p, whether a periodic filling by w is
in S
This can be done, for a given pattern, in polynomial time.

This gives an exponential time algorithm, hence the set of periods is a
computable set.
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Multidimensional SFTs

We can say better. Recall that NP is the class of problems that are
solvable in nondeterministic polynomial time.

If L ⊆ N is the set of periods of a d-dimensional SFT, then
{an|n ∈ L} ∈ NP

({an|n ∈ L} is L coded in unary)
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Multidimensional SFTs

Theorem (J., Vanier [JV10])
If {an|n ∈ L} ∈ NP, then there exists a multidimensional SFT with L as
a set of periods.
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Sketch of the proof

Let’s forget about NP for a moment.
We will try to build a d-dimensional SFT S that works as the effective
subshifts S1 we saw earlier

All periodic points are of the form

. . . . . . . . . . . .

. . . ]]]]]]]]]]]]]]]. . .

. . . ] ] ]. . .

. . . ] w ] w ]. . .

. . . ] ] ]. . .

. . . ]]]]]]]]]]]]]]]. . .

. . . ] ] ]. . .

. . . ] w ] w ]. . .

. . . ] ] ]. . .

. . . ]]]]]]]]]]]]]]]. . .

where the period is exactly the distance between two ] symbols
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Idea of the proof (first step)

Start from an aperiodic SFT, and add three symbols +,−, |.
Add rules that force the three symbols to take the place of ]
As the original SFT is aperiodic, any periodic point must have one
of these symbols, and thus the square structure.

A lot of details to do that exactly. We don’t want to have a periodic
point with the symbols | but no −,+.

This takes care of the F1 part of the SFT.
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Idea of the proof (first step)

One problem remains. The point might be of the form

. . . . . . . . . . . .

. . . ]]]]]]]]]]]]]]]. . .

. . . ] ] ]. . .

. . . ] w ] v ]. . .

. . . ] ] ]. . .

. . . ]]]]]]]]]]]]]]]. . .

. . . ] ] ]. . .

. . . ] u ] u ]. . .

. . . ] ] ]. . .

. . . ]]]]]]]]]]]]]]]. . .
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Idea of the proof (first step)

The aperiodic background must be the same in all the squares.
Solution : Do not start from any aperiodic SFT, but for a
deterministic aperiodic SFT.

In such a SFT (e.g. the Kari-Papasoglu SFT [KP99]), the filling of
the square is entirely set by the symbols on the borders
Just ensure that two consecutive squares have the same border
(easily done by adding an additional layer)

We are done for the first step. This generalizes in any dimension.
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Idea of the proof (second step)

Now we need to keep only the squares of size n where an is accepted
by some polynomial time nondeterministic Turing machine.

The TM works in space-time nk for some k
To know if n is accepted can be done within a space-time diagram
of size nk .
To know if n is accepted can be done in a square of size nk .
Problem : we only have a square of size n.
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Idea of the proof (second step)

Do the construction in dimension 2k rather than in dimension 2.

We now have a hypercube of size n, that can contain n2k symbols.
Enough to encode all the computation.
Fold the nk × nk square into an hypercube of size n.

The proof is done, up to technical details (we also need to ensure that
all hypercubes contain the same computation)
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