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1. Basic definitions and outline of the paper

Let A be a countably infinite set endowed with the discrete topology. The product
space AZ (with product topology), consisting of all bi-infinite sequences of symbols
from the alphabet A, is a non-compact, totally disconnected, perfect metric space.
The (left-)shift map σ : AZ → AZ, σ((xi)i∈Z) := (xi+1)i∈Z is a homeomorphism.
It induces some dynamics on AZ and (AZ, σ) is called the full shift on A.
Every shift-invariant subset X of AZ endowed with the induced subspace
topology together with the restriction of the shift map σ = σ|X yields a
subshift (X,σ). There is a countable set of clopen cylinders n[a0 . . . am] :=
{(xi)i∈Z ∈ X | ∀ 0 ≤ i ≤ m : xn+i = ai} (n ∈ Z, m ∈ N0) generating the topology
on X. Two subshifts (X1, σ1) and (X2, σ2) are (topologically) conjugate, if there is
a homeomorphism γ : X1 → X2 that commutes with the shift maps (σ2◦γ = γ◦σ1).
Then (X1, σ1) and (X2, σ2) are merely two presentations of the same topological
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dynamical object and we denote by Pres(X) the set of all presentations of the
subshift (X,σ), i.e. the set of all subshifts conjugate to (X,σ).
Let G = (V,E) be a directed graph with vertex set V , edge set E together
with the maps i, t : E → V , where i(e) gives the initial and t(e) the terminal
vertex of an edge e ∈ E. A subshift (X,σ) is called countable state Markov
shift, if its set of presentations contains an edge shift (XG, σ), with XG :={
(xi)i∈Z ∈ EZ | ∀ i ∈ Z : t(xi) = i(xi+1)

}
the set of bi-infinite walks along the edges

of a countably infinite directed graphG (|E| = ℵ0) and σ acting onXG. If not stated
explicitly all graphs are directed, having a countably infinite set of edges. W.l.o.g.
the graphs considered are assumed to be essential, i.e. the in- and out-degree at
every vertex is strictly positive. (XG, σ) is then called a graph presentation of
(X,σ) and Graph(X) denotes the set of all graph presentations of (X,σ).
For every point x ∈ X in a subshift (X,σ) and m ≤ n ∈ Z let x[m,n], x[m,∞) and
x(−∞,n] respectively denote the block xm xm+1 . . . xn−1 xn, a right- or a left-infinite
ray of x. In an edge shift x[m,n] corresponds to a finite path of length n −m + 1,
whereas x[m,∞) and x(−∞,n] are equivalent to right- and left-infinite walks.
We define the language B(X) of a subshift (X,σ) as the disjoint union of all sets
of blocks Bm(X) :=

{
x[0,m−1]

∣∣ x ∈ X}
⊆ Am (m ∈ N). |w| denotes the length and

wn (n ∈ N0 ∪̇ {∞}) the n-times concatenation of a block w ∈ B(X).
A subshift (X,σ) is called locally compact, if X is locally compact. For countable
state Markov shifts this implies the compactness of every cylinder set. An edge
shift (XG, σ) is locally compact, iff every vertex in G has finite in- and out-degree
(G is locally finite).
A subshift (X,σ) is called (topologically) transitive, if X is irreducible, i.e. for every
pair u,w ∈ B(X) of blocks there is a block v ∈ B(X), such that u v w ∈ B(X). An
edge shift (XG, σ) is transitive, iff G is strongly connected.
Let Orb(X) := {Orb(x) | x ∈ X} the set of σ-orbits Orb(x) := {σn(x) | n ∈ Z} ⊆
X. Using the backward-orbit Orb−(x) := {σ−n(x) | n ∈ N0} and the forward-
orbit Orb+(x) := {σn(x) | n ∈ N0} we define the set of doubly-transitive points
DT(X) :=

{
x ∈ X | Orb−(x), Orb+(x) both are dense in X

}
. For transitive

subshifts this set is non-empty and dense. Let x ∈ DT(X) then every block
w ∈ B(X) is contained infinitely often in x(−∞,0] and x[0,∞).
Finally we define the set of periodic points Per(X) :=

⋃
n∈N Pern(X) =⋃̇

n∈NPer0n(X) under the action of σ, where Pern(X) denotes the set of points of
period n and Per0n(X) the set of points of least period n. For transitive, countable
state subshifts Per(X) is a countable dense subset in X.
For further notions and background information on subshifts we refer to the
monographs on symbolic dynamics by D. Lind and B. Marcus [LM] and by B.
Kitchens [Kit].

Now we recall the fundamental definition of this paper: Let (X,σ) be some subshift.
A map ϕ : X → X is called an automorphism (of σ), if ϕ is a self-conjugacy,
i.e. a shiftcommuting homeomorphism from X onto itself. Obviously the set of
automorphisms forms a group Aut(σ) under composition. It is an invariant of
topological conjugacy reflecting the inner structure and symmetries of the subshift.
For subshifts of finite type (SFTs) there is an extensive and profound theory dealing
with automorphisms (see e.g. [BK1], [BK2], [BLR], [FieU1], [FieU2], [Hed],
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[KR1], [KR2], [KRW1] and [KRW2]) and leading to very deep and strong results
concerning the conjugacy problem, the FOG-conjecture or the LIFT-hypothesis.
The automorphism group of any nontrivial SFT is a countably infinite, residually
finite group (therefore it cannot contain any infinite simple or any nontrivial
divisible subgroup) with center isomorphic to Z. It is discrete with respect to
the compact-open topology, does not contain any finitely generated subgroups with
unsolvable word problem, but admits embeddings of a great variety of other groups
(see section 4).
The automorphism groups of coded systems have been studied in [FF2] with quite
different results (they are much smaller and can be stipulated explicitely; their
center can be isomorphic to a wide range of abstract groups), whereas to our
knowledge there are yet no published results on automorphisms of countable state
Markov shifts.
Trying to fill part of this gap, the present paper contains results from the authors
Ph.D. thesis [Sch]. In section 2 we determine the cardinality of Aut(σ) for locally
compact and non locally compact, countable state Markov shifts and give several
equivalent criteria for Aut(σ) being countable. In section 3 we study the 1-point-
compactifications of locally compact, countable state Markov shifts with Aut(σ)
countable. Those compact dynamical systems need no longer be expansive, that
is in general they aren’t conjugate to any subshift. Instead the property Aut(σ)
countable is equivalent to expansiveness being restricted to doubly-transitive points.
Furthermore this implies the existence of an almost invertible 1-block-factor-map
from the compactification onto some synchronised system. Section 4 contains
some results on the subgroup structure of Aut(σ). Like in the SFT-case we can
realize lots of abstract groups via marker constructions. The gradual fading of
compactness ((FMDP), locally compact, non locally compact) shows up in a
decrease of algebraic restrictions and an increase of possible subgroups. This makes
it very difficult to describe Aut(σ) as an abstract group. Stimulated by the well-
known result of J. Ryan [Rya1],[Rya2] on the center of Aut(σ) for SFTs, we are
able to reprove this theorem for non-compact Markov shifts in section 5. Therefore
Aut(σ) is again highly non-abelian (in contrast to the coded-systems-case) and the
periodic-orbit representation is faithful on Aut(σ)/〈σ〉.

2. The cardinality of Aut(σ)

Let SN be the set of all bijective mappings from N (or generally any countably
infinite set) onto itself. We call SN the full permutation group (on a countable set).
Its cardinality is 2ℵ0 . By SN,f we denote the subgroup of finite permutations, i.e.
the set of all bijective mappings from N onto itself that fix all but finitely many
elements. The cardinality of SN,f is ℵ0.

Proposition 2.1. The automorphism group of every transitive, countable state
Markov shift is isomorphic to a subgroup of SN and therefore has cardinality at
most 2ℵ0 .

Proof: Since the Markov shift (X,σ) is transitive, the countable set of periodic
points Per(X) is dense in X and every automorphism ϕ ∈ Aut(σ) is uniquely
determined by its action on Per(X). Therefore Aut(σ) ≤ SPer(X)

∼= SN. 2
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Now we can state the cardinality-result for non locally compact Markov shifts:

Theorem 2.2. Every transitive, non locally compact, countable state Markov shift
has an automorphism group of cardinality 2ℵ0 .

Proof: Let G = (V,E) be a graph presentation for the non locally compact
Markov shift (X,σ). W.l.o.g. we may assume that there is a vertex v ∈ V with
infinite out-degree (the symmetric situation of a vertex with infinite in-degree can
be treated via time-reversal, i.e. carrying out the following construction for the
transposed graph).
Let {ej | j ∈ N} ⊆ E be the set of edges starting at v. For every j /∈ 3N choose
a shortest path pj from t(ej) back to v (G is strongly connected); pj is empty, if
t(ej) = v. This gives an infinite set of distinct loops lj := ej pj at the vertex v.
Use the edges ej (j ∈ 3N) as markers to define maps φi : X → X (i ∈ N) that
interchange the blocks l3i−2 l3i−1 e3i and l3i−1 l3i−2 e3i in every point x ∈ X and
take no further action.
By construction no path pj (j /∈ 3N) can contain an edge ei (i ∈ N). This guarantees
that no loop lj (j /∈ 3N) contains any edge e3i and no two loops can overlap
partially. Therefore every φi is well-defined. φi is an involutorial sliding-block-code
with coding length 2 |l3i−2 l3i−1| + 1. So we have constructed a countable set of
distinct automorphisms {φi | i ∈ N} ⊆ Aut(σ).
Next consider infinite products of the maps φi and show that for every 0/1-sequence
(ak)k∈N ∈ {0, 1}N there is a well-defined automorphism ϕ(ak) :=

∏
i∈N φi

ai :
Distinct automorphisms φi act on disjoint blocks ending with the symbol e3i.
Furthermore the {e3i | i ∈ N}-skeleton, i.e. the coordinates at which a symbol
e3i appears remain invariant under any composition of φi s. The φi commute
with each other and the infinite product ϕ(ak) is defined independently of the
order of composition. We get (ϕ(ak))2 = (

∏
i∈N φi

ai)2 =
∏

i∈N φi
2ai = IdX and

ϕ(ak)(X) ⊆ X, so ϕ(ak) is a well-defined order 2 bijection from X onto X and
obviously ϕ(ak) commutes with the shift map.
To show that ϕ(ak) (and ϕ(ak)

−1 = ϕ(ak)) is continuous, it suffices to show that the
zero-coordinate of the image is prescribed by a finite block of the preimage:
Fix x ∈ X. The symbol x0 is unchanged unless it is part of some block l3i−2 l3i−1 e3i

or l3i−1 l3i−2 e3i. Let n be the length of a shortest path from t(x0) to the vertex
v. Whenever xn+1 /∈ {ei | i ∈ N} we have

(
ϕ(ak)(x)

)
0

= x0. In this case the block
x[0,n+1] decides about the zero-coordinate of the image. If xn+1 = ej for some j ∈ N
the only automorphism in the product that can act on the zero-coordinate is φi with
i :=

⌈
j
3

⌉
. We have

(
ϕ(ak)(x)

)
0

=
(
φi

ai(x)
)
0
. Since φi is sliding-block,

(
ϕ(ak)(x)

)
0

is determined by the knowledge of a finite block of x. As ϕ(ak) commutes with σ,
this proves continuity.
Two distinct 0/1-sequences (ak)k∈N, (bk)k∈N ∈ {0, 1}N define distinct auto-
morphisms ϕ(ak), ϕ(bk). For i ∈ N such that ai 6= bi, the point x :=
(l3i−2 l3i−1 e3i p3i)∞ ∈ X (p3i a shortest path from t(e3i) back to v) has different
images under ϕ(ak) and ϕ(bk). Therefore we have constructed a subgroup

{
ϕ(ak)

∣∣
(ak)k∈N ∈ {0, 1}N}

≤ Aut(σ) of cardinality 2ℵ0 . 2
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We remark that though all φi in the proof of theorem 2.2 are sliding-block-codes,
i.e. uniformly continuous maps, the infinite products ϕ(ak) needn’t have bounded
coding length and are in general merely continuous.

To answer the cardinality-question for locally compact, countable state Markov
shifts we need the notion of a doublepath in a directed graph:
A pair of two distinct paths p, q of equal length (|p| = |q|), connecting the same
initial with the same terminal vertex is called a doublepath and is denoted [p; q].
By definition we have [p; q] = [q; p] and in slight abuse of notation i(p) = i(q) and
t(p) = t(q).
Two doublepaths [p1; q1] and [p2; q2] are edge-disjoint, if the union of all edges in
p1 and q1 is disjoint from all edges in p2 union q2.

A strongly connected, directed graph has the property (FMDP), if it contains at
most Finitely Many pairwise edge-disjoint DoublePaths.

Theorem 2.3. Let (X,σ) be a transitive, locally compact, countable state Markov
shift. Aut(σ) has cardinality ℵ0, iff any (every) graph presentation of (X,σ) has
(FMDP). Otherwise Aut(σ) has cardinality 2ℵ0 .

The proof of theorem 2.3 is given in three steps:

Lemma 2.4. Let (XG, σ) be any graph presentation of a transitive, locally compact,
countable state Markov shift on some directed graph G containing infinitely many,
pairwise edge-disjoint doublepaths. Then Aut(σ) has cardinality 2ℵ0 .

Proof: Since XG is irreducible and locally compact, G has to be strongly
connected and locally finite. Let P := {[pi; qi] | i ∈ N} be an infinite set of pairwise
edge-disjoint doublepaths in G. For every [pi; qi] choose a marker edge ei starting
at t(pi) = t(qi) that is not contained in this doublepath. This is possible, since both
paths pi, qi may be extended by the same finite set of edges already contained in
[pi; qi] until they end at a vertex, at which an edge not contained in [pi; qi] starts.
Take such an edge as marker and use the enlarged doublepath in place of [pi; qi].
Inductively we construct an infinite subset Q ⊆ P of doublepaths (with adjoint
markers) such that all marker edges are distinct and no one does occur in any of
the doublepaths in Q: Let Q := ∅. Choose [p; q] ∈ P ; define Q := Q ∪̇ {[p; q]}. Due
to the local finiteness of G there are at most finitely many elements in the set P
whose markers are part of [p; q]. After removing this finite subset, the element [p; q]
itself as well as the doublepath (if there is one) containing the marker of [p; q] from
P , we are left with a still infinite set. Choosing one of the remaining doublepaths
we iterate this procedure to build up an infinite subset Q as desired. For simplicity
of notation renumber the elements in Q to get Q = {[pi; qi] | i ∈ N}.
For every 0/1-sequence (ak)k∈N ∈ {0, 1}N define a map ϕ(ak) : XG → XG that
interchanges every block pi ei and qi ei in a point in XG, iff ai = 1. Caused by
edge-disjointness of the doublepaths [pi; qi] ∈ Q and the use of the distinct markers
ei, being edge-disjoint from all elements in Q, no partial overlaps are possible
and ϕ(ak) is well-defined. ϕ(ak) commutes with σ by construction. Furthermore
ϕ(ak)(XG) ⊆ XG and ϕ(ak)

2 = IdXG
, that is ϕ(ak) = ϕ(ak)

−1 is bijective.
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Continuity of ϕ(ak) is shown as in the proof of theorem 2.2. The zero-coordinate of
x ∈ XG is unchanged unless x0 is part of a by definition of Q uniquely determined
doublepath [pj ; qj ] ∈ Q. Looking at the finite block x[1−|pj |,|pj |] one can decide
about

(
ϕ(ak)(x)

)
0
: Suppose x[m,m+|pj |] = pj ej for some 1 − |pj | ≤ m ≤ 0 and

aj = 1, then the zero-coordinate of the image has to be the (1−m)-th symbol of the
block qj . Analogously for x[m,m+|pj |] = qj ej . In all other cases

(
ϕ(ak)(x)

)
0

= x0.
Therefore ϕ(ak) is a shiftcommuting homeomorphism.
Obviously distinct sequences (ak)k∈N, (bk)k∈N ∈ {0, 1}N give rise to distinct maps
ϕ(ak) 6= ϕ(bk), because for i ∈ N such that ai 6= bi the images ϕ(ak)(x) and ϕ(bk)(x)
of a point x ∈ XG with x[0,|pi|] = pi ei differ. This shows the existence of a subgroup{
ϕ(ak)

∣∣ (ak)k∈N ∈ {0, 1}N}
≤ Aut(σ) of cardinality 2ℵ0 . 2

For the next lemma we need the notion of the F -skeleton of a bi-infinite sequence:
Let F ⊆ A be a subset of some alphabet A. The F -skeleton of a point x ∈ AZ is

the partial map κx : Z → F , κx(i) :=

{
xi if xi ∈ F
↑ otherwise

(↑ signals an undefined

value of κx).

Lemma 2.5. A locally finite, strongly connected graph G = (V,E) has property
(FMDP), iff there is a finite set F ⊆ E of edges, such that every doubly-transitive
walk along the edges of G is uniquely determined by its F -skeleton.

Proof: W.l.o.g. we may assume |E| = ℵ0, since otherwise F := E is a good
choice to prove the statement.
”⇐=”: Suppose G does not have (FMDP), then for every finite set F ( E there
is a doublepath [p; q] that does not contain an edge from F (in fact there are
infinitely many). The path p occurs infinitely often in every doubly-transitive walk.
Exchanging one such block p by the block q gives another doubly-transitive walk,
that obviously has the same F -skeleton.
”=⇒”: Assume that P := {[pn; qn] | 1 ≤ n ≤ N} is a maximal, finite set of pairwise
edge-disjoint doublepaths in G (having (FMDP)). Let F ( E be the union of
all edges that show up in elements of P . F is a finite set. Suppose there are
two doubly-transitive walks x, y ∈ DT(XG) with the same F -skeleton. There are
coordinates i ≤ j ∈ Z such that xi−1 = yi−1, xj+1 = yj+1 ∈ F , xk, yk /∈ F for all
i ≤ k ≤ j and x[i,j] 6= y[i,j]. This implies the existence of a doublepath [x[i,j]; y[i,j]]
of length j − i + 1 connecting t(xi−1) = t(yi−1) with i(xj+1) = i(yj+1), which is
edge-disjoint to all elements in P . This contradicts the maximality of P . 2

This equivalent reformulation of the property (FMDP) is enough to finish the
proof of theorem 2.3:

Lemma 2.6. Let the transitive, locally compact, countable state Markov shift (X,σ)
be presented on some directed graph G = (V,E). Suppose there is a finite set F ( E

of edges such that every doubly-transitive point in X is uniquely determined by its
F -skeleton, then Aut(σ) is countably infinite.

Proof: Again G has to be a stongly connected, locally finite graph with |E| = ℵ0.
As all powers of σ are distinct automorphisms, Aut(σ) has at least cardinality
ℵ0. Since DT(X) forms a dense subset in X, every automorphism ϕ ∈ Aut(σ) is
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uniquely determined by its action on the doubly-transitive points. It suffices to
show that there are at most countably many restrictions ϕ|DT(X) possible.
Let F ( E be a finite set as stated in the lemma. X is locally compact, so
every zero-cylinder 0[e] (e ∈ E) is compact-open. The preimages ϕ−1(0[e]) are also
compact-open and therefore can be covered by a finite set of cylinders. Select such
a cover with (minimal) cardinality mf ∈ N for all f ∈ F :

ϕ−1
(
0[f ]

)
=

mf⋃
i=1

nf,i
[bf,i] with bf,i ∈ B(X) and nf,i ∈ Z

As ϕ commutes with σ one gets:

ϕ
(
nf,i+k[bf,i]

)
⊆ k[f ] =

mf⋃
j=1

ϕ
(
nf,j+k[bf,j ]

)
∀ 1 ≤ i ≤ mf , k ∈ Z

Knowing these finite preimage cylindersets
{

nf,i
[bf,i] | 1 ≤ i ≤ mf

}
for all f ∈ F is

equivalent to knowing the whole F -skeleton of the image of every point in X under
ϕ. Since an automorphism maps DT(X) onto itself, this knowledge fixes ϕ|DT(X).
Let M be the set of all mappings µ : F → {C ( C(X) | C finite} , f 7→{

nf,i
[bf,i] | 1 ≤ i ≤ mf

}
where C(X) denotes the countable set of all cylinders of

X. Obviously {C ( C(X) | C finite} is countable and so is M . Now a mapping
µ ∈ M induces at most one automorphism, so there is an injection from Aut(σ)
into M , proving Aut(σ) countable. 2

Since the automorphism group is an invariant of topological conjugacy, its
cardinality is independent of the subshift presentation one has chosen. In particular
this shows the conjugacy-invariance of the property (FMDP) as claimed in theorem
2.3: Either every or no graph presentation of a given transitive, locally compact,
countable state Markov shift has (FMDP).

As a direct consequence of lemmata 2.4 and 2.6 we get a result about the compact-
open topology on Aut(σ). This topology is build up from subbasis sets of the form
S(C,U) := {ϕ ∈ Aut(σ) | ϕ(C) ⊆ U}, where C ⊆ X is compact and U ⊆ X is
open.
For SFTs the compact-open topology on Aut(σ) is known to be discrete (see [Kit],
Observation 3.1.2), whereas for countable state Markov shifts this need not be true:

Corollary 2.7. Let (X,σ) be a transitive, locally compact, countable state
Markov shift. The compact-open topology on Aut(σ) is discrete, iff Aut(σ) has
cardinality ℵ0.

Proof: ”⇐=”: Using the notation of lemma 2.6, every automorphism ϕ ∈ Aut(σ)
is uniquely determined by fixing the finite sets of cylinders

{
nf,i

[bf,i]
∣∣ 1 ≤ i ≤ mf

}
for all f ∈ F . Since ϕ induces a bijection on the periodic points, it is not possible
to have another automorphism, whose preimage cylindersets contain that of ϕ for
all f ∈ F . Therefore the singleton {ϕ} can be expressed as a finite intersection of
subbasis sets:⋂

f∈F

S
(mf⋃

i=1

nf,i
[bf,i], 0[f ]

)
=

⋂
f∈F

{
φ ∈ Aut(σ)

∣∣∣ φ(mf⋃
i=1

nf,i
[bf,i]

)
⊆ 0[f ]

}
= {ϕ}
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”=⇒”: Suppose Aut(σ) is not countable. Then every graph presentation contains
an infinite set of pairwise edge-disjoint doublepaths. Finite intersections of subbasis
sets fix the action of an automorphism merely on a finite set of these doublepaths.
To single out an automorphism ϕ(ak) as defined in lemma 2.4 one would need to
fix the action on all doublepaths, but this is only possible via infinite intersections
of subbasis sets. 2

So the property (FMDP) not only governs the cardinality but also the topological
structure of Aut(σ) for locally compact, countable state Markov shifts. In section 4
we will see that (FMDP) in addition has a heavy impact on the subgroup structure
of the automorphism group.

3. The 1-point-compactifications of locally compact Mar-

kov shifts with Aut(σ) countable

As for any locally compact topological space one defines the 1-point-
compactification (X0, σ0) of a transitive, locally compact, countable state Markov
shift (X,σ) where X0 := X ∪̇ {∞} denotes the Alexandroff-compactification of X
and the homeomorphism σ0 : X0 → X0 is the canonical extension of the shift map:
σ0|X := σ and σ0(∞) = ∞.
We remark that in general σ0 is no longer expansive. As a consequence although
X0 is still a zero-dimensional topological space, the compactification (X0, σ0) is a
compact-metric dynamical system that need not be (conjugate to) any subshift.
D. Fiebig [FieD] has shown that σ0 is expansive, i.e. (X0, σ0) is a subshift, if
and only if any (every) graph presentation of (X,σ) on a locally finite, strongly
connected graph G = (V,E) contains a finite set F ( E of edges such that:
(1) Every bi-infinite walk along the edges of G contains an edge from F .
(2) For any pair of edges c, d ∈ E and n ∈ N there is at most one path

p := e1 e2 . . . en such that i(e1) = t(c), t(en) = i(d) and ei /∈ F for all
1 ≤ i ≤ n.

(3) For every edge e0 ∈ E there is at most one right-infinite ray r := e0 e1 e2 . . .

with ei /∈ F for all i ≥ 1 and at most one left-infinite ray l := . . . e−2 e−1 e0
with ei /∈ F for all i ≤ −1.

Lets have a look at property (2) first:

Proposition 3.1. A strongly connected, locally finite graph G has property (2),
iff it has (FMDP).

Proof: ”=⇒”: Suppose there are infinitely many pairwise edge-disjoint
doublepaths in G. To fulfill (2) the set F has to contain at least one edge from
every doublepath. This contradicts the finiteness of F .
”⇐=”: Let P be a maximal finite set of pairwise edge-disjoint doublepaths in G.
Define F := {e ∈ E | ∃ [p; q] ∈ P : e ∈ p ∨ e ∈ q} ( E to be the union of all edges
that occur in elements of P . Since P was maximal, every doublepath in G contains
an edge from the finite set F , i.e. F satisfies property (2). 2

Putting together theorem 2.3, proposition 3.1 and the result by D. Fiebig ([FieD],
lemma 4.1) we get:
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Corollary 3.2. The automorphism group of every transitive, locally compact,
countable state Markov shift having an expansive 1-point-compactification is
countably infinite.

Remark: There is another, more direct proof for this corollary, that does not refer
to a graph presentation, but shows that even the set of endomorphisms End(σ)
(continuous, shiftcommuting maps from X to itself) is countable:
Under the assumptions of corollary 3.2 the 1-point-compactification (X0, σ0) is
a compact subshift. Due to Curtis-Hedlund-Lyndon [Hed] every endomorphism
φ0 : X0 → X0 is a sliding-block-code. Therefore End(σ0) is at most countable. In
addition there is a canonical injection ε : End(σ) → End(σ0) , φ 7→ φ0 such that
φ0|X = φ and φ0(∞) = ∞, proving End(σ) countable.

In a little digression we show that the three properties in D. Fiebig’s characterisation
of expansiveness are not independent from each other. In fact (3) already implies
(1), forcing the equivalence between σ0 being expansive and properties (2) and (3)
alone.

Lemma 3.3. Every strongly connected, locally finite graph containing a finite set of
edges that fulfill (3), automatically satisfies property (1).

Proof: Let G = (V,E) be a directed graph as desired and F ( E be a finite set
satisfying (3); XG denotes the set of bi-infinite walks along the edges of G.
Suppose property (1) could not be fulfilled, i.e. there is an infinite set W :={
w(i) ∈ XG | i ∈ N

}
of bi-infinite walks, such that no finite set of edges is enough

to mark all elements in W . W.l.o.g. assume that no two elements w(i), w(j) ∈ W

differ only by some translation (∀ k ∈ Z : σk
(
w(i)

)
6= w(j)) and no w(i) contains an

edge from F .
To show that the elements of W are even pairwise edge-disjoint, suppose there is
an edge e ∈ w(i) being also part of w(j) (i 6= j ∈ N). Then w(i) and w(j) branch
somewhere before (or after) e. This would give two distinct left-(right-)infinite
walks ending (starting) at e that do not contain any edge from F . This clearly
contradicts the assumption on F satisfying (3), so the elements of W are pairwise
edge-disjoint.
Let I := {i(f) | f ∈ F} ⊆ V be the finite set of initial vertices of all edges in F .
For every i ∈ N choose an edge ei in w(i) and a shortest path pi connecting t(ei)
with one of the vertices in I. By construction these paths do not contain any
edge from F . Since I is finite and W is infinite, there is a vertex v ∈ I at which
two (in fact infinitely many) paths pi, pj end. Now the paths ei pi and ej pj are
distinct (ei 6= ej), end at the same vertex v and can be extended to left-infinite
walks that do not contain any edge from F by attaching the left-infinite rays of w(i)

and w(j) ending in i(ei), i(ej) respectively. Again this contradicts property (3). 2

Now we come back to the main purpose of this section, which is to find a
fundamental description of the graph-property (FMDP) in a priori conjugacy-
invariant, purely dynamical terms. This finally results in a presentation-
independent characterisation of locally compact, countable state Markov shifts with
Aut(σ) countable.
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To achieve this we recall the definition of the Gurevich metric: Let (X0, σ0)
be the 1-point-compactification of a locally compact subshift (X,σ). There is
an unique metric d0 : X0 × X0 → R+ which is consistent with the topology
induced on X0 by compactification of the topological space X. The (up to uniform
equivalence) unique restriction d := d0|X is called Gurevich metric. If a locally
compact, countable state Markov shift (X,σ) is given in some graph presentation
on G = (V,E) there is an explicit formula for the Gurevich metric (see e.g. [FF1],
page 627):

∀x, y ∈ X : d(x, y) :=
∑
n∈Z

2−|n| |h(xn)− h(yn)|

where h : E →
{
m−1 | m ∈ N

}
denotes any injective mapping from the edge set

into the unit-fractions.

We have seen that the 1-point-compactifications of locally compact, countable state
Markov shifts with Aut(σ) countable need not be subshifts. σ0 is expansive with
respect to the Gurevich metric, iff in addition to property (FMDP) the Markov
shift has also property (3). The following theorem exposes what can be said about
the 1-point-compactifications in the absence of (3):

Theorem 3.4. For transitive, locally compact, countable state Markov shifts (X,σ)
property (FMDP) is equivalent to σ0 being expansive (with respect to the Gurevich
metric) on the doubly-transitive points, i.e. there is an expansivity constant
c > 0 such that the otherwise uncountable set of c-shadowing points Tc(x) :=
{y ∈ X | ∀n ∈ Z : d(σn(x), σn(y)) ≤ c} is an one-element set for all x ∈ DT(X).
In other words: ∀x ∈ DT(X), y ∈ X : x 6= y ⇒ ∃n ∈ Z : d(σn(x), σn(y)) > c.

Proof: ”=⇒”: Assume G = (V,E) is a graph presentation for the Markov shift
(X,σ) having (FMDP). Following from lemma 2.5, there is a finite set of edges
F ( E uniquely determining every doubly-transitive point in X via its F -skeleton.
For a given injective mapping h : E →

{
m−1 | m ∈ N

}
inducing the Gurevich

metric, one defines c := 1
2 minf∈F

{
1
m − 1

m+1

∣∣ m = h(f)−1
}
. Since F is finite,

c > 0. For x, y ∈ X, x0 ∈ F and x0 6= y0 we have the estimate:

d(x, y) ≥ |h(x0)− h(y0)| ≥
1
m
− 1
m+ 1

≥ 2c > c with m := h(x0)−1

To obtain d(σn(x), σn(y)) ≤ c for all n ∈ Z, the F -skeleton of x and y have to
agree. So for x ∈ DT(X) this implies x = y and therefore Tc(x) = {x}.
”⇐=”: Now assume G = (V,E) contains infinitely many pairwise edge-disjoint
doublepaths. For every c > 0 there exists a doublepath [p; q] such that for all edges
e ∈ E contained in [p; q] one has h(e) ≤ c

3 (h : E →
{
m−1 | m ∈ N

}
as above).

Every x ∈ DT(X) contains the block p infinitely often. Substituting any subset of
these with q gives uncountably many distinct points y ∈ X. The following estimate
shows that all of these shadow x in a distance ≤ c:

c ≥ 3 max
{
h(e)

∣∣ e ∈ [p; q]
}
≥

∑
j∈Z

2−|j| max
{
|h(xi)− h(yi)|

∣∣ i ∈ Z
}
≥

≥
∑
j∈Z

2−|j|
∣∣h((σn(x))j

)
− h

(
(σn(y))j

)∣∣ = d(σn(x), σn(y)) ∀n ∈ Z
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So Tc(x) is uncountable and c cannot be an expansivity constant. 2

Theorem 3.4 characterizes the dynamical systems that show up as 1-point-
compactifications of transitive, locally compact, countable state Markov shifts
(X,σ) with Aut(σ) countable as transitive, zero dimensional, compact-metric
topological spaces equipped with a homeomorphism acting at least expansive on
doubly-transitive points.
If (X,σ) additionally fulfills property (3), every point is determined by its F -
skeleton (for some F ( E finite) and the homeomorphism is (fully) expansive with
respect to the Gurevich metric. Another result by D. Fiebig ([FieD], lemma 4.5)
shows that in this case the 1-point-compactification is already (conjugate to) a
synchronised system with at most one point not containing a synchronising block,
i.e. SYN(X0) ⊇ X0 \{∞}. Property (FMDP) alone still implies almost-conjugacy
to a synchronised system:

Proposition 3.5. Let (X,σ) be a transitive, locally compact, countable state
Markov shift with Aut(σ) countable. There is an almost-invertible 1-block-factor-
code κ : (X0, σ0) → (Y, σY ) from the 1-point-compactification onto a synchronised
system with SYN(Y ) ⊇ Y \ κ(∞), that is κ|DT(X0) : (DT(X0), σ0|DT(X0)) →
(DT(Y ), σY |DT(Y )) is a topological conjugacy on the doubly-transitive points.

Proof: Let G = (V,E) be a graph presentation for (X,σ) and F ( E a finite
set of edges determining every doubly-transitive point via its F -skeleton. Define

A := F ∪̇ {↑}. The skeleton map κ : X0 → AZ :
(
κ(x)

)
i
:=

{
xi if xi ∈ F
↑ otherwise

∀x ∈

X, i ∈ Z and κ(∞) := ↑∞ is a 1-block-map, thus continuous and shiftcommuting.
As X0 is compact, so is Y := κ(X0); (Y, σY ) ⊆ (AZ, σ) is a compact subshift.
Every symbol f ∈ F is a synchronising block in (Y, σY ): Let x̃, ỹ ∈ Y with
x̃0 = f = ỹ0. Since X is given in graph presentation, all preimages x ∈ κ−1(x̃) ⊆
X, y ∈ κ−1(ỹ) ⊆ X can be merged at their common zero-coordinate f to form
a new point z ∈ X with z(−∞,0] = x(−∞,0] and z[0,∞) = y[0,∞). By definition of
κ one gets z̃ := κ(z) with z̃(−∞,0] = x̃(−∞,0] and z̃[0,∞) = ỹ[0,∞), so f is in fact
synchronizing for Y and every point in Y \ {↑∞} sees a synchronising symbol.
It remains to show that κ|DT(X0) is a topological conjugacy: As X0 = X ∪̇ {∞}
we have DT(X0) = DT(X). Every point y ∈ DT(Y ) contains infinitely many
edges from F in its left- and its right-infinite ray. The blocks ↑n (n ∈ N) between
those edges can be decoded uniquely to paths in G. There is an unique preimage
x ∈ DT(X) with κ(x) = y. This proves bijectivity of κ|DT(X0).
Finally the inverse map (κ|DT(X0))

−1 is continuous with respect to the induced
topologies on DT(X0) ⊆ X and DT(Y ) ⊆ Y : Let y ∈ DT(Y ) and W (x) ⊆ DT(X)
some neighbourhood of x := κ−1(y) ∈ X. For m,n ∈ N large enough, W (x)
contains a cylinder −n[x−n . . . x0 . . . xm] ∩ DT(X) with x−n, xm ∈ F . Its image
V (y) := κ

(
−n[x−n . . . x0 . . . xm]∩DT(X)

)
is compact-open, contains y and satisfies

κ−1
(
V (y)

)
= −n[x−n . . . x0 . . . xm] ∩DT(X) ⊆W

(
κ−1(y)

)
⊆ DT(X). 2
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4. On the subgroup structure of Aut(σ)

Using marker constructions lots of abstract groups have been embedded into the
automorphism groups of SFTs (see [Hed], [BLR], [KR1], [Kit]) to show their rich
and diverse structure and to exhibit some algebraic restrictions. In this context
we call an abstract group H a subgroup of Aut(σ), if Aut(σ) contains a subgroup
isomorphic to H. Since it is possible to carry over the whole concept of marker
automorphisms to countable state Markov shifts, all subgroups realized in the
automorphism groups of SFTs also show up in the non-compact setting. Therefore
according to [BLR] the automorphism group of every transitive (mixing), countable
state Markov shift contains any direct sum of countably many finite groups, the
direct sum of countably many copies of Z, the free group on countably many
generators and any free product of finitely many cyclic groups, as well as all of their
subgroups. Moreover the fundamental group of any 2-manifold and any countable,
locally finite, residually finite group is a subgroup in Aut(σ) ([KR1]).
What about other groups realizable only in the countable state case and what about
remaining, relaxed and new restrictions and algebraic properties?

Recall from proposition 2.1 that – even in the non locally compact setting – the
automorphism group of any transitive, countable state Markov shift is a subgroup
of SN. Using the work of N.G. de Bruijn as well as that of M. Kneser and S.
Swierczkowski one can exclude certain abstract groups from being subgroups of
Aut(σ): The group of all finite permutations on a set of cardinality 2ℵ0 ([Bru1],
theorem 5.1) and the group H := F/F ′′, where F is a non-abelian free group with
more than 2ℵ0 generators, F ′ its commutator subgroup and F ′′ the commutator
group of F ′ ([KS], theorem 2), cannot be realized in the automorphism group of
any transitive, countable state Markov shift (subshift with dense periodic points).

On the contrary there is at least a class of non locally compact, countable state
Markov shifts with SN itself occuring as a subgroup in Aut(σ). The automorphism
groups of this class are hence universal in the sense that they contain a copy of
the automorphism group of any transitive, countable state subshift with periodic
points dense (apply the argument in the proof of proposition 2.1). Prototype for
this class is the full-shift AZ with |A| = ℵ0.

Proposition 4.1. If a transitive, non locally compact, countable state Markov shift
is presentable on a graph containing an infinite number of paths of fixed length
connecting a common initial with a common terminal vertex, then SN is (isomorphic
to) a subgroup of its automorphism group.

Proof: Let G = (V,E) be a graph presentation as assumed in the proposition,
k ∈ N a shortest path length such that there are two vertices u, v ∈ V (u = v

allowed) with infinitely many distinct paths pi (i ∈ N0) of length k between them.
W.l.o.g. assume all paths pi pairwise edge-disjoint. This is possible, since due to
the minimality of k any edge in E can only be part of a finite number of paths pi.
As G is strongly connected, there is a shortest path q connecting v = t(pi) with
u = i(pi). Let f ∈ E be the initial edge of p0. For every permutation π ∈ SN
define a map ϕπ : XG → XG which scans a point and replaces every block
pi q f with pπ(i) q f (i ∈ N). These are well-defined (f cannot occur in q or any
pi), bijective sliding-block-codes with memory and anticipation ≤ k + |q|. Since
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ϕπ ◦ ϕτ = ϕπ◦τ and ϕπ
−1 = ϕπ−1 , we have constructed a set of automorphisms

{ϕπ | π ∈ SN} ≤ Aut(σ) isomorphic to SN. 2

We collect the strong implications of proposition 4.1 in the following corollary. To
say it in short: Most of the algebraic restrictions known for the automorphism
groups of SFTs (see [BLR], section 3) vanish completely for the class of Markov
shifts described above and a lot of subgroups which are forbidden for SFTs show
up.
Recall that the automorphism group is residually finite, if for every element ϕ ∈
Aut(σ), ϕ 6= IdX there is a finite group H and a homomorphism α : Aut(σ) → H

with α(ϕ) 6= 1H . This excludes the existence of both infinite simple and nontrivial
divisible subgroups.
An abstract group H is divisible, if for every element h ∈ H and every n ∈ N there
is an element g ∈ H with gn = h.

Corollary 4.2. Let (X,σ) be a transitive, non locally compact, countable state
Markov shift as in proposition 4.1.
Its automorphism group contains infinite simple groups and is thus not residually
finite. Every countable group can be realized in Aut(σ). In particular the
divisible groups Q and Z(p∞) = Z[1/p]/Z (p prime) can be embedded. The
automorphism group does contain finitely generated groups with unsolvable word
problem. Moreover every abelian group of cardinality 2ℵ0 (especially R) occurs in
Aut(σ). Finally its set of subgroups is closed under taking free products of any 2ℵ0

of its elements.

Proof: The existence of the infinite simple subgroup AN,f ≤ SN (alternating
group on a countably infinite set) within Aut(σ) prohibits residual finiteness.
Every countable group H operates on itself by (left-)translation αg : H → H, h 7→
g h ∀ g ∈ H. This yields a representation of H as a group of permutations on H.
So H ≤ SH

∼= SN ≤ Aut(σ).
According to R. Lyndon and P. Schupp ([LS], theorem IV.7.2) there are
finitely generated, countable groups with unsolvable word problem, e.g. H :=〈
a, b, c, d | a−i b ai = c−i d ci iff i ∈ S

〉
where S ( N is a recursively enumerable,

non recursive subset.
The last two statements follow from the work of N.G. de Bruijn ([Bru2], theorem
4.3 and [Bru1], theorem 4.2). 2

Next we specify a larger class of transitive, (non) locally compact, countable state
Markov shifts admitting at least an embedding of the restricted permutation group
SN,f into Aut(σ). For this we need a graph presentation containing a strongly
connected, infinite, tree-like subgraph consisting of an infinite number of loops li
(i ∈ N) – the nodes of the tree – of uniform length and of paths pi,j , pj,i – the
links between the nodes – connecting the loops li and lj . If the length of all paths
pi,j , pj,i in this tree-structure is bounded globally, we can construct a subgroup of
Aut(σ) isomorphic to SN,f. Obviously this class contains the previously considered
family of non locally compact Markov shifts (proposition 4.1) as well as a subclass
of locally compact, countable state Markov shifts. Prototypes for this class are
(topological) random walks on N or on Z with steps 0,±1.
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Proposition 4.3. If any graph presentation of a transitive, countable state Markov
shift contains an infinite set of loops L = {li | i ∈ N} of equal length, such that for
every loop li there is, within a bounded distance, another loop lj (i < j ∈ N), i.e.
there is a path pi,j connecting a vertex of li with one of lj, a path pj,i connecting lj
back to li and both paths have length bounded by a global constant, then SN,f can be
embedded into the automorphism group.

Proof: We distinguish between two cases: Either the graph presentation
G = (V,E), as assumed in the proposition, contains a loop l ∈ L and an infinite
subset L′ ⊆ L of loops having distance to l bounded by some constant M ∈ N.
Then G cannot be locally finite. G already fulfills the assumptions of proposition
4.1, because using the elements in L′ there are infinitely many distinct paths of
length ≤ 3(|l| − 1) + 2M from one vertex in l back to this vertex. Thus not only
SN,f but even SN can be embedded into Aut(σ).
In the remaining case the tree-like subgraph consisting of the loops li ∈ L and the
paths pi,j , pj,i is locally finite. After renumbering we can find an infinite chain of
loops lk (k ∈ N) being connected via paths pk,k+1 and pk+1,k of length bounded by
M ∈ N. W.l.o.g. choose pk,k+1, pk+1,k minimal, such that i(p1,2) = t(p2,1) = i(l1)
and t(pk,k+1) = i(pk+1,k) = i(pk+1,k+2) = t(pk+2,k+1) = i(lk+1) for all k ∈ N. For
the rest of the proof it suffices to look at this linear chain.
Let N := |lk| be the common length of all loops lk. Define a countably infinite set
of closed paths

bk := pk,k+1 pk+1,k lk (pk,k+1 pk+1,k)
(2M)!

|pk,k+1pk+1,k|
−1

(k ∈ N)

of uniform length (2M)! +N which, due to the minimality of pk,k+1, pk+1,k, allow
no nontrivial overlaps. Furthermore cyclically shifting the blocks bk by |pk,k+1|
symbols to the left yields

b̃k := pk+1,k lk (pk,k+1 pk+1,k)
(2M)!

|pk,k+1pk+1,k|
−1
pk,k+1 (k ∈ N)

Obviously i(b̃k) = t(b̃k) = i(bk+1) = t(bk+1) and
∣∣b̃k∣∣ = |bk| = (2M)! + N for all

k ∈ N.
For every k ∈ N define a

(
(2M)! + N − 1, (2M)! + N − 1

)
-sliding-block-code

φ(k,k+1) : X → X, which scans a point and replaces every block b̃k by bk+1 as well
as every block bk+1 by b̃k. Since b̃k and bk+1 cannot overlap, φ(k,k+1) is well-defined.
By definition these maps are continuous, shiftcommuting involutions, hence
automorphisms. Moreover φ(k,k+1)

(
(b̃k)∞

)
= (bk+1)∞ and φ(k,k+1)

(
(bk+1)∞

)
=

(b̃k)∞ imply φ(k,k+1)

(
Orb

(
(bk)∞

))
= Orb

(
(bk+1)∞

)
, φ(k,k+1)

(
Orb

(
(bk+1)∞

))
=

Orb
(
(bk)∞

)
and φ(k,k+1)

(
Orb

(
(bi)∞

))
= Orb

(
(bi)∞

)
for all i 6= k, k + 1. The

family of automorphisms
(
φ(k,k+1)

)
k∈N acts on O :=

{
Orb

(
(bk)∞

)
| k ∈ N

}
like

the set of transpositions
(
(k, k+1)

)
k∈N does on N. One easily checks that different

presentations of a finite permutation on O as finite products of the φ(k,k+1) yield
the same automorphism. As any permutation in SN,f

∼= 〈(k, k + 1) | k ∈ N〉 is
presentable as a finite product of transpositions, the set

{
φ(k,k+1) | k ∈ N

}
generates

a subgroup of Aut(σ) isomorphic to SN,f. 2

Corollary 4.4. The automorphism groups of topological Markov shifts satisfying
the assumptions of proposition 4.3 contain infinite simple subgroups and are thus
not residually finite.
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Proof: The alternating group AN,f on a countably infinite set is an infinite simple
subgroup of SN,f. Hence Aut(σ) ≥ AN,f is not residually finite. 2

Finally we show that property (FMDP) implies all of the restrictions on the
subgroup structure of Aut(σ) known for SFTs:

Theorem 4.5. For every transitive, locally compact, countable state Markov shift
property (FMDP) forces the existence of a formal zetafunction, i.e. for any given
period there are only finitely many periodic points.

Proof: Let G = (V,E) be a strongly connected, locally finite graph presenting
the Markov shift and let F ( E be a finite set of edges such that every doublepath
in G (having (FMDP)) contains an element from F . Suppose XG has no formal
zetafunction.
There is a smallest period length k ∈ N with |Perk(XG)| = ℵ0 and G has
infinitely many simple loops of length k. (A path/loop is called simple, if it has
no proper closed subpath.) As G is locally finite, one can choose an infinite set
L := {li | i ∈ N0} of such simple loops that are pairwise vertex-disjoint and in
addition edge-disjoint from the set F . For every i ∈ N choose a shortest path pi

from i(l0) to i(li) and a shortest path qi from i(li) back to i(l0). Since l0 pi and
pi li form a doublepath, pi has to contain an edge from F . The same is true for qi.
Using a pigeon hole argument, one gets a pair of subsets M1, M2 ⊆ F such that
there exists an infinite subset:

L′ := {li ∈ L | i ∈ N ∧ (f ∈M1 ⇔ f ∈ pi) ∧ (f ∈M2 ⇔ f ∈ qi)} ⊆ L

For notational simplicity renumber the elements in L′ = {li | i ∈ N} (as well as
their paths pi, qi) consecutively.
By construction the elements in M1 occur exactly once and in an uniform order in
all paths pi. Analogously for M2 and qi. Look at the shortened paths p̃i being the
suffix of pi, connecting the terminal vertex of the last edge from M1 with i(li) and q̃i
being the prefix of qi connecting i(li) to the initial vertex of the first edge from M2.
Obviously no p̃i, q̃i does contain an edge from F , but all of them start (end) at a
common vertex. Another pigeon hole argument gives two distinct indices i 6= j ∈ N
such that |p̃i|+ |q̃i| = |p̃j |+ |q̃j |+m ·k with m ∈ N0. The doublepath [p̃i q̃i; p̃j lj

m q̃j ]
contradicts the assumption on F . Therefore XG has a formal zetafunction. 2

Theorem 4.5 allows us to get most of the restrictive results on the algebraic structure
of the automorphism groups of SFTs from section 3 in [BLR] by simply copying
the proofs using only the existence of a zetafunction.

Corollary 4.6. Let (X,σ) be a transitive, locally compact, countable state
Markov shift with Aut(σ) countable. Then the automorphism group is residually
finite. Thus Aut(σ) neither contains any nontrivial divisible nor any infinite
simple subgroup. This excludes some abstract countable (abelian) groups, like AN,f,
PSLn(Q) (the projective unimodular groups over the rationals for 2 ≤ n ∈ N), Q,
Z(p∞) (p prime). A subgroup of Q/Z is realized in Aut(σ) iff it is residually finite.

Open Problem: After all these similarities between the automorphism groups
of SFTs and countable state Markov shifts with property (FMDP) – both
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are countably infinite, residually finite groups with a seemingly equal subgroup
structure, being discrete with respect to the compact-open topology and having
the same center (see section 5) – we may ask the question whether all countable
automorphism groups that show up for transitive, locally compact, countable state
Markov shifts are already realized for transitive SFTs. Unfortunately up to now we
do not know of any property that distinguishes between the automorphism groups
of these two subshift-classes.

The results obtained so far already give a coarse classification of all transitive,
countable state Markov shifts (X,σ) via their automorphism groups into 5 mutually
disjoint, conjugacy-invariant classes:

(X, σ) non locally compact (X, σ) locally compact

Aut(σ) uncountable,
non residually finite

very weak restrictions on
algebraic properties and
subgroups; e.g. subshifts
satisfying proposition 4.1

weak restrictions, due to the
absense of a zetafunction
and of (FMDP); e.g. local-
ly-compact subshifts satisfy-
ing proposition 4.3

Aut(σ) uncountable,
residually finite

no nontrivial divisible, no
infinite simple subgroups;
e.g. non locally compact,
countable state Markov
shifts with formal zeta-
function

no nontrivial divisible, no
infinite simple subgroups;
examples can be constructed
from graph presentations
of transitive, locally
compact, countable state
Markov shifts with formal
zetafunctions by doubling
(n-folding) all edges

Aut(σ) countable,
thus residually finite not existent !

strong restrictions like in the
SFT case; this class con-
tains exactly the transitive,
locally compact, countable
state Markov shifts with
(FMDP)

5. Ryan’s theorem for countable state Markov shifts

As we have seen in the previous section, it is difficult to describe the automorphism
groups of topological Markov shifts as abstract groups. Thus we look for further
group-theoretic properties describing Aut(σ) and limiting the set of possible groups.
One such property examined for SFTs is the center Z = Z(Aut(σ)). J. Ryan
([Rya1] and [Rya2]) proved that for all transitive SFTs the center consists exactly
of the powers of the shift map and is therefore (for all nontrivial, transitive SFTs)
isomorphic to Z.

Since by definition σ has to commute with every element in Aut(σ), we get{
σi | i ∈ Z

}
≤ Z not just for Markov shifts but for any subshift (X,σ). Therefore

the automorphism group of any nontrivial, transitive subshift has to have a center
containing Z as a subgroup. Moreover the center is a normal subgroup in Aut(σ).
This excludes certain abstract groups from being realized as automorphism groups
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of subshifts. For example:

Proposition 5.1. The automorphism group of any transitive, countable state
Markov shift (nontrivial subshift) is not isomorphic to either SN or SN,f.

Proof: Suppose Aut(σ) ∼= SN. The theorem of J. Schreier and S. Ulam [SU] gives
the Jordan-Hölder decomposition SN�SN,f�AN,f�{1} (factor groups being simple).
Therefore Z � Aut(σ) has to be isomorphic to one of these normal subgroups.
Obviously this contradicts Z ≥

{
σi | i ∈ Z

}
being abelian.

The same argument shows Aut(σ) 6∼= SN,f. 2

After some preliminaries we can reprove Ryan’s theorem for countable state Markov
shifts:

Lemma 5.2. Every automorphism of some transitive Markov shift acting trivially
on the set of (periodic) σ-orbits is a power of the shift map.

Proof: It suffices to show that any automorphism ϕ ∈ Aut(σ) of the transitive
Markov shift (X,σ) inducing the identity on the set of periodic σ-orbits just shifts
all periodic points of large-enough period by a common amount. Since every point
in X can be approximated by a sequence of periodic points of large period, this
already fixes the action of ϕ on all of X and proves ϕ being some power of σ.
Choose a periodic point x ∈ O1 from some minimal σ-orbit O1 ⊆ X and let N1 ∈ N
be the orbit length of O1. Then the block l1 := x[0,N1) ∈ BN1(X) defines x and
cannot overlap itself nontrivially. Now ϕ(x) = σs1(x) for − 1

2N1 < s1 ≤ 1
2N1

uniquely determined. As ϕ is continuous, mapping all finite σ-orbits onto itself,
there is a coding length n1 ∈ N such that

(
ϕ(y)

)
[0,N1)

=
(
σs1(x)

)
[0,N1)

for all

y ∈ −n1N1 [l1
2n1 ]. Let O2, O3 be two distinct σ-orbits of lengths N2, N3 ∈ N

larger than 2(n1 + 1)N1 and let l2 ∈ BN2(X), l3 ∈ BN3(X) be defining blocks for
O2, O3. Once again one has ϕ(l2∞) = σs2(l2∞) and ϕ(l3∞) = σs3(l3∞) for unique
− 1

2N2 < s2 ≤ 1
2N2 and − 1

2N3 < s3 ≤ 1
2N3. Moreover there are numbers n2, n3 ∈ N

for which
(
ϕ(y)

)
[0,Ni)

=
(
σsi(li∞)

)
[0,Ni)

whenever y ∈ −niNi [li
2ni ] (i := 2, 3).

Using the irreducibility of X one can find blocks p12, p23, p31 ∈ B(X) of
minimal length such that l1 p12 l2 p23 l3 p31 l1 ∈ B(X) is admissible for X. For
m ∈ N with mN1 > max {|l3 p31 l1 p12 l2| , |l2 p23 l3|} the periodic point y :=
(l12n1+m p12 l2

2n2 p23 l3
2n3 p31)∞ ∈ X has least periodM := (2n1+m)N1+2(n2N2+

n3N3) + |p12 p23 p31|. In particular a block l1m can only occur inside l12n1+m. As
before ϕ(y) = σs(y) for − 1

2M < s ≤ 1
2M unique.

Now
(
σs+n1N1(y)

)
[0,(m+1)N1)

=
(
σs1(x)

)
[0,(m+1)N1)

guarantees −(n1 + 1)N1 <

s ≤ (n1 + 1)N1. Since N2 > 2(n1 + 1)N1, this implies − 1
2N2 < s ≤ 1

2N2.
But then s = s2, because using the coding length of the block l2 one gets(
σs+(2n1+m)N1+|p12|+n2N2(y)

)
[0,N2)

=
(
σs2(l2∞)

)
[0,N2)

. As N3 > 2(n1 + 1)N1, the
same argument shows s = s3. Therefore all periodic σ-orbits of length greater than
2(n1 + 1)N1 are shifted under ϕ by the same amount. 2

Remark: The proof of lemma 5.2 merely relies on the Markov property and the
transitivity, but not on the cardinality of the alphabet. Hence it can be used for
SFTs, countable state (and even larger) Markov shifts.
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Using the periodic-orbit representation of the automorphism group, originally
introduced for SFTs by M. Boyle and W. Krieger (see [BK1] or [BLR]), we can
translate lemma 5.2 into the language of group theory. To achieve this we define
the periodic-orbit representation ρ for automorphism groups of (countable state)
Markov shifts exactly as for SFTs:
Let Orbn(X) := Per0n(X)/〈σ〉 the set of σ-orbits of length n ∈ N. Then

ρ : Aut(σ) →
∞∏

n=1

Aut
(
Orbn(X), σ

)
, ϕ 7→ ρ(ϕ) :=

(
ρn(ϕ)

)
n∈N

where ρn(ϕ) ∈ Aut
(
Orbn(X), σ

)
is the permutation on the set of σ-orbits Orbn(X)

induced by ϕ|Per0n(X). ρn(ϕ) is well-defined, since ϕ|Per0n(X) ∈ Aut
(
Per0n(X), σ

)
commutes with σ|Per0n(X) and ρn(σ) = IdOrbn(X).

Corollary 5.3. For every transitive Markov shift (X,σ) the periodic-orbit
representation of Aut(σ) is faithful on the group Aut(σ)/〈σ〉.

Proof: Let ϕ ∈ Aut(σ) with ρ(ϕ) = Id. Then ρn(ϕ) = IdOrbn(X) for all n ≥ 1.
Lemma 5.2 implies ϕ ∈ 〈σ〉, hence ϕ ∈ [Id] ∈ Aut(σ)/〈σ〉. 2

Theorem 5.4. The center of the automorphism group of any transitive (countable
state) Markov shift consists exactly of the powers of the shift map.

Proof: Suppose the automorphism ϕ ∈ Aut(σ) is no power of the shift map.
Following from lemma 5.2 there are two distinct (periodic) σ-orbits O1, O2 of some
length N ∈ N such that ϕ(O1) = O2. Let x(1) ∈ O1, x

(2) := ϕ(x(1)) ∈ O2 and
x(3) := ϕ(x(2)) ∈ Per0N (X). By continuousity, the blocks li := (x(i))[0,N) ∈ BN (X)
(i := 1, 2, 3) satisfy ϕ(−m1N [l12m1 ]) ⊆ 0[l2] und ϕ(−m2N [l22m2 ]) ⊆ 0[l3] for
m1, m2 ∈ N large enough.
Define a periodic point y(1) := (l1m+m1 p12 l2

m2 p21 l1
m3 p̃12 l2

m4 p̃21 l1
m5)∞ ∈ X of

large period, where p12, p21, p̃12, p̃21 ∈ B(X) are non empty blocks not containing
a complete block l1, l2 or l3 (those exist, since X is irreducible). Furthermore
mi ∈ N (1 ≤ i ≤ 5) are chosen large enough to get an image of the form
y(2) := ϕ(y(1)) = (l2m+n1 q23 l3

n2 q32 l2
n3 q̃23 l3

n4 q̃32 l2
n5)∞ with ni ≥ 1 (1 ≤ i ≤ 5).

As suggested by this representation no prefix of q23, q̃23 and no suffix of q32, q̃32
shall be a complete block l2; no prefix of q32, q̃32 and no suffix of q23, q̃23 is a
complete block l3. Finally m2, m4 can be tuned to get n2 6= n4 and m ∈ N should
satisfy mN > (m1 + m2 + m3 + m4 + m5)N + |p12 p21 p̃12 p̃21|. This guarantees
y(1), y(2) ∈ Per0M (X) with M := |p12 p21 p̃12 p̃21|+N (m+m1+m2+m3+m4+m5);
the block (y(2))[0,M) has only trivial overlaps to itself.
Thus define an involutoric sliding-block-code ψ : X → X interchanging the blocks
l2

m+n1 q23 l3
n2 q32 l2

n3 q̃23 l3
n4 q̃32 l2

n5 and l2
m+n1 q23 l3

n4 q32 l2
n3 q̃23 l3

n2 q̃32 l2
n5 ;

l2
m+n1 q23 and q̃32 l2

n5 acting as markers. So ψ(y(1)) = y(1), but ψ(y(2)) 6= y(2).
Obviously ψ ∈ Aut(σ) does not commute with ϕ, since (ϕ ◦ ψ)(y(1)) = ϕ(y(1)) =
y(2) 6= ψ(y(2)) = (ψ ◦ ϕ)(y(1)). So ϕ /∈ Z and Z =

{
σi

∣∣ i ∈ Z
}
. 2

Concerning the center of Aut(σ) we get the same restrictions for (countable state)
Markov shifts as for SFTs. Theorem 5.4 additionally can be used to exclude further
abstract groups from being realized as automorphism groups of transitive Markov
shifts. In particular the comparison between Markov shifts and coded systems
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yields considerably differences. Recalling some of the results by D. Fiebig and U.-
R. Fiebig presented in [FF2], there are coded systems with automorphism groups
isomorphic to any infinite, finitely generated abelian group (e.g. Aut(σ) ∼= 〈σ〉⊕Z)
as well as isomorphic to 〈σ〉 ⊕ Z[1/2] or 〈σ〉 ⊕ G with G ≤ Q/Z residually finite.
Of course non of these can occur for transitive Markov shifts. Another result from
[FF2] proves the existence of a coded system (X,σX) with automorphism group
Aut(σX) ∼= 〈σX〉 ⊕Aut(σY ), where (Y, σY ) is any nontrivial subshift with periodic
points dense – a situation completely impossible for transitive Markov shifts, unless
Z(Aut(σY )) is trivial, which is only true for a system of fixed points.

It seems that the automorphism groups of coded systems and countable state
Markov shifts differ a lot, whereas those of SFTs and countable state Markov shifts
are quite similar (leaving alone the possibility of new classes of subgroups, which is
due to the enlarged alphabet). The remaining amount of compactness influences the
size – cardinality and possible subgroups – of Aut(σ), but its fundamental structure
is governed by the Markov property (plenty of marker automorphisms leading to
the same result on the center of Aut(σ); similarities between automorphism groups
of SFTs and countable state Markov shifts with (FMDP)).
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abzählbar unendlicher Zustandsmenge, Ph.D. thesis, Universität Heidelberg (2004).

Online-publication: http://www.ub.uni-heidelberg.de/archiv/5097
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