Investigador del CMM UChile fue doblemente reconocido por su contribución al desarrollo de las matemáticas

Investigador del CMM UChile fue doblemente reconocido por su contribución al desarrollo de las matemáticas

El doctor en Matemáticas Aplicadas y académico de la Universidad de Chile, Daniel Remenik, fue galardonado por su contribución a extender las fronteras del conocimiento matemático.

Entre grandes matemáticos de la Universidad de Princeton, Michigan y Toronto, el doctor en Matemáticas Aplicadas e investigador del Centro de Modelamiento Matemático de la Universidad de Chile (CMM), Daniel Remenik, fue premiado con el MCA Prize 2021, otorgado por el Mathematical Council of the Americas.

Semanas  después, el investigador obtuvo el Rollo Davidson Prize, dirigido a jóvenes probabilistas, entregado por la Universidad de Cambridge. De este último premio, Remenik fue el primer matemático fuera de Europa y Estados Unidos en recibir este reconocimiento.

¿Pero cuál ha sido la contribución de Daniel Remenik a la matemática? Entre otras cosas, el investigador del Centro de Modelamiento Matemático publicó un estudio que contribuyó a entender de mejor manera ciertas conductas “que parecieran ser aleatorias, pero vistas desde una mirada más amplia suelen cumplir con un patrón”. Ejemplos de esto se observan en muchas partes: el crecimiento de una colonia de bacterias, el tiempo de espera de un bus, entre otros. 

Según cuenta Remenik, su trabajo investigativo se centra en el campo de la ‘Clase de Universalidad KPZ’, desarrollada por los físicos Mehran Kardar, Giorgio Parisi y Yi-Cheng Zhang. La ‘Universalidad’ en matemática y física alude a que existen familias de fenómenos o sistemas que, si bien pueden ser diversos, su comportamiento a nivel macroscópico es el mismo. El ejemplo más típico de aquello es el ‘Teorema del Límite Central’, que establece  que algunos conjuntos muy grandes de datos, como alturas de una población, puntajes en una prueba, entre otros, muestran un patrón de distribución que gráficamente se parecen a la famosa ‘Campana de Gauss’.

“Con la Clase de Universalidad KPZ ocurre algo similar, pero para una familia de fenómenos diferentes y con algunos factores adicionales que llevan a un comportamiento un poco distinto”, añade Remenik. Un ejemplo de un modelo aplicable a esta línea de investigación es el frente de combustión que avanza al quemar un papel. El avance del fuego presenta un comportamiento aleatorio, pero este puede estudiarse de manera detallada y encontrar ciertas conductas predecibles, tomando en cuenta una gran cantidad de casos analizados.

Este tipo de procesos le interesa mucho a los científicos, porque es posible vincular relaciones con varios fenómenos de la naturaleza, como la proliferación de bacterias o el espectro de átomos pesados, detalló el investigador del CMM.

Daniel Remenik participó en un artículo científico que extendió las fronteras del conocimiento en esta rama de la matemática. Su contribución ayudó a generar una estructura análoga a la ‘Campana de Gauss’, pero aplicada a esta clase de modelos. “Esto abre muchas posibilidades hacia futuro, y ya han salido algunas consecuencias inesperadas que en particular, explican algunas de estas conexiones matemáticas”, concluyó el investigador.

Texto: Fundación Encuentros del Futuro para Centro de Modelamiento Matemático (CMM)

Posted on May 6, 2021 in Noticias en castellano