Neurological Diseases, Brain Dynamics and Mathematical Modelling

Eleuterio F. Toro Laboratory of Applied Mathematics University of Trento, Italy.

Email: eleuterio.toro@unitn.it Webpage: eleuteriotoro.com

I first describe a range of neurological diseases thought to be associated to disturbed brain venous haemodynamics resulting from extracranial venous strictures, of which a prominent example is Multiple Sclerosis [1]. It has been hypothesized that such extracranial venous anomalies hamper venous return, cause intracranial venous hypertension and may trigger a complex chain of events leading to demyelination and ultimately to disability. Other neuropathologies are currently being re-examined under this vascular framework, emphasizing the importance of underlying biophysical phenomena and encouraging a multidisciplinary approach to study them. Examples include Parkinson's, Alzheimer's and Meniere's disease.

Then I describe a mathematical model for the entire human circulation, a simulation tool to study some aspects of brain haemodynamics [1], [2], with particular attention paid to the venous and cerebrospinal systems, with the aim of contributing to elucidate some of the issues raised by the vascular theory. Mathematical and numerical challenges associated with the model are pointed out. Our mathematical simulations tend to support the vascular theory, though experimental data is lacking [2]-[5]. Potential implications are discussed.

I conclude this talk by briefly referring to the very recent discovery of a *brain lymphatic system* [6],[7], which added to the by now a well established *glymphatic system*, begins to configure a coherent biophysical picture that may shed light on the causes and potential cure of a broad class of neurological diseases. Our current research efforts on mathematical modelling, motivated by these discoveries, are also mentioned.

REFERENCES

- [1] Mueller L O and Toro E F. A global multiscale mathematical model for the human circulation with emphasis on the venous system. International Journal for Numerical Methods in Biomedical Engineering 30, 7 (2014), 681–725.
- [2] Mueller L O and Toro E F. Enhanced global mathematical model for studying cerebral venous blood flow. Journal of Biomechanics. Volume 47, Issue 13, 17 October 2014, Pages 3361-3372.
- [3] Mueller L O, Toro E F, Haacke E M and Utriainen D. Impact of CCSVI on cerebral haemodynamics: a mathematical study. Phlebology. 2015 Jun 2. pii: 0268355515586526. [Epub ahead of print].
- [4] Toro E F. Brain Venous Haemodynamics, Neurological Diseases and Mathematical Modelling. A Review. Applied Mathematics and Computation. Vol. 272, pp 542-579, 2016.
- [5] Eleuterio F. Toro, Lucas O. Mueller, Mariapaola Cristini, Erica Menegatti and Paolo Zamboni. Impact of Jugular Vein Valve Function on Cerebral Venous Haemodynamics. Current Neurovascular Research. Vol. 12, No. 4, pages 384-397, 2015.
- [6] Louveau A, et al. Structural and functional features of central nervous system lymphatic vessels. *Nature* (2015).
- [7] Aspelund A, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. *The Journal of experimental medicine* 212.7 (2015): 991-999.