

cmm.uchile.cl

Beauchef 851, edificio norte, Piso 7 Santiago, Chile CP 837 0456

Tel. +56-2 2978 4870

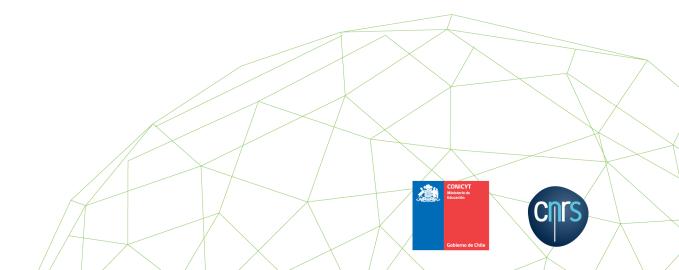
SEMINARIOS LECTURA PAPERS COVID19

Expositor: Emilio Molina, estudiante de doctorado de UCH y de U. Paris Sorbonne, Francia

Título: "Problemas de control óptimo para estudiar quarentenas óptimas considerando impacto economico de estas"

Miércoles o6 de mayo a las 15:30 hrs. Modalidad Vía Online.

URL: https://uchile.zoom.us/j/82536907920



A Simple Planning Problem for COVID-19 Lockdown

Fernando E. Alvarez David Argente Francesco Lippi

Emilio Molina Olivares

06 de Mayo del 2020

Introducción

• Modelo de control óptimo con dinámica tipo SIR.

Introducción

- Modelo de control óptimo con dinámica tipo SIR.
- Enfoque en la resolución numérica del problema.

Introducción

- Modelo de control óptimo con dinámica tipo SIR.
- Enfoque en la resolución numérica del problema.
- Trata de dar estimaciones de cuanto le puede costar a un planificador central la epidemia y la implementación de cada política de control.

Modelo

En el paper se plantea un modelo SIR, con muertes solo asociadas al virus, y bajo un control $L(t) \in [0, \overline{L}], \overline{L} < 1$ que representa el porcentaje de Lockdown.

$$\dot{S}(t) = -eta \left[S(t)(1 - heta L(t)) \right] \left[I(t)(1 - heta L(t)) \right] \ \dot{I}(t) = eta \left[S(t)(1 - heta L(t)) \right] \left[I(t)(1 - heta L(t)) \right] - \gamma I(t) \ - \dot{N}(t) = D(t) = \phi(I(t)) I(t) \ ext{con } N(t) = S(t) + I(t) + R(t), \ N(0) = 1$$

Modelo

En el paper se plantea un modelo SIR, con muertes solo asociadas al virus, y bajo un control $L(t) \in [0, \bar{L}], \ \bar{L} < 1$ que representa el porcentaje de Lockdown.

$$\dot{S}(t) = -\beta \left[S(t)(1 - \theta L(t)) \right] \left[I(t)(1 - \theta L(t)) \right]
\dot{I}(t) = \beta \left[S(t)(1 - \theta L(t)) \right] \left[I(t)(1 - \theta L(t)) \right] - \gamma I(t)
-\dot{N}(t) = D(t) = \phi(I(t))I(t)$$

con N(t) = S(t) + I(t) + R(t), N(0) = 1, y el funcional a **maximizar** es:

$$\int_0^{+\infty} e^{-(r+v)t} \left((N(t) - [S(t) + I(t)]L(t))w + \dot{N}(t)\chi + \frac{v}{r}N(t)w \right) dt$$

Parámetros del modelo

- \bullet θ efectividad del Lockdown
- r factor de descuento del planificador
- v probabilidad por unidad de tiempo de encontrar una cura y una vacuna.
- w producción individual de cada agente vivo cuando no está en Lockdown.
- ullet χ costo extra, en unidad de producción, de muerte por el virus.
- La tasa de muerte de los infectados $0<\phi(I)\leq \gamma$ se asume de la forma $\phi(I)=\varphi+\kappa I$

Hipótesis del modelo

- ullet El lockdown podría no implementarse de manera total, por esto hay una cota $ar{L}$
- El lockdown podría no ser completamente efectivo, por eso el parámetro θ . No hay mucha evidencia para estimarlo.
- Los recuperados se asumen inmune.
- El modelo está normalizado al tomar N(0) = 1
- Los agentes infectados pero sin lockdown, aún pueden producir. (Se mejora identificando en el modelo a los sintomáticos)
- La gente en lockdonw no produce.
- Las personas mueren unicamente por el virus.

Reducción a 2 variables

El problema anterior se puede reducir a un problema equivalente que consiste en **minimizar** el siguiente funcional:

$$\int_0^{+\infty} e^{-(r+v)t} \left(L(t)w(\tau[S(t)+I(t)]+1-\tau) + \phi(I(t))I(t) \left(\chi+\frac{w}{r}\right) \right) dt$$

donde el parámetro au se define como

$$\tau = \begin{cases} 1 & \text{si es posible identificar a todos los recuperados} \\ 0 & \text{en caso contrario} \end{cases}$$

Reducción a 2 variables

El problema anterior se puede reducir a un problema equivalente que consiste en **minimizar** el siguiente funcional:

$$\int_0^{+\infty} e^{-(r+v)t} \left(L(t)w(\tau[S(t)+I(t)]+1-\tau) + \phi(I(t))I(t) \left(\chi+\frac{w}{r}\right) \right) dt$$

donde el parámetro au se define como

$$\tau = \begin{cases} 1 & \text{si es posible identificar a todos los recuperados} \\ 0 & \text{en caso contrario} \end{cases}$$

Este problema lo resuelven con metodos globales (HJB y programación dinámica)

Table 1: Parameter Values for Benchmark Case

Parameter	Value	Definition/Reason
β	0.20	Daily increase of active cases if unchecked
γ	1/18	Daily rate of infected recovery (includes those that die).
φ	$0.01 \times \gamma$	IFR: fatality per active case (per day).
κ	$0.05 \times \gamma$	Implies a 3 percent fatality rate with 40 percent infected.
r	0.05	Annual interest rate 5 percent.
ν	0.667	Prob rate vaccine $+$ cure (exp. duration 1.5 years)
$ar{L}$	0.70	1 - GPD share health, retail, government, utilities, and food ${\rm mfg.}$
θ	0.50	Effectiveness of lockdown
χ	0	Value of Statistical Life 20 × w (i.e. $v.s.l \approx \$1.3\mathrm{M})$

Figure: Datos para el caso resuelto

Figure 1: Benchmark Case (medium effectiveness $\theta = 0.5$)

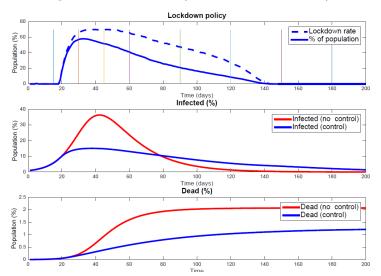


Figure: Solución caso base

Table 2: Welfare Losses $\left(\frac{rV(S,I)}{w}\right)$ with Optimal Policy vs. without Intervention

Case	Parameters	Welfare Loss	Output Loss	Welfare Loss				
		w/Policy	w/Policy	No Policy				
Benchmark Case								
Low effectiveness	θ =0.3	1.7 %	0.3 %	1.9%				
Medium effectiveness	θ =0.5	1.5 %	0.4~%	1.9%				
High effectiveness	$\theta = 0.7$	1.4 %	0.5%	1.9 %				
Alternative Values of Statistical Life, different χ								
$v.s.l = 10\times$ GDP per capita	$\chi = -\frac{1}{2} \frac{w}{r}$	0.9 %	0.2~%	0.9 %				
$v.s.l = 30\times$ GDP per capita	$\chi = \frac{1}{2} \frac{w}{r}$	2.0 %	0.6 %	2.8 %				
$v.s.l = 80 \times$ GDP per capita	$\chi=3rac{w}{r}$	3.7 %	1.6~%	7.5 %				
$v.s.l = 140\times$ GDP per capita	$\chi=6rac{w}{r}$	5.7 %	1.0 %	13.2 %				

Figure: Variación de ciertos parámetros parte 1

Table 2: Welfare Losses $\left(\frac{rV(S,I)}{w}\right)$ with Optimal Policy vs. without Intervention

Constant fatality rate $\kappa=0$								
Low effectiveness	θ =0.3	0.9 %	0.0 %	0.9 %				
Medium effectiveness	θ =0.5	0.9 %	0.0 %	0.9 %				
High effectiveness	θ =0.7	0.9 %	0.0 %	0.9 %				
No testing of the recovered $\tau = 0$								
$v.s.l = 10 \times \text{ GDP per capita} \qquad \chi = -\frac{1}{2} \frac{w}{r}$		0.9 %	0.1 %	0.9 %				
$v.s.l = 20\times$ GDP per capita	$\chi = 0$	1.6 %	0.4~%	1.9 %				
$v.s.l = 30\times$ GDP per capita	$\chi = \frac{1}{2} \frac{w}{r}$	2.2 %	0.6~%	2.8 %				
$v.s.l = 80 \times$ GDP per capita	$\chi=3rac{w}{r}$	4.5 %	2.5 %	7.5 %				
$v.s.l = 140\times$ GDP per capita	$\chi=6\frac{w}{r}$	6.2 %	2.7 %	13.2 %				

Figure: Variación de ciertos parámetros parte 2

• En el caso base, la cuarentena dura 4 meses con un peak del 60% de la población confinada.

- En el caso base, la cuarentena dura 4 meses con un peak del 60% de la población confinada.
- En el caso base, las perdidas con la medida óptima corresponde a un 28% de PIB anual, donde el 8% es debido al Lockdown. En caso de no hacer Lockdown, las perdidas son del 38% de un PIB anual.

- En el caso base, la cuarentena dura 4 meses con un peak del 60% de la población confinada.
- En el caso base, las perdidas con la medida óptima corresponde a un 28% de PIB anual, donde el 8% es debido al Lockdown. En caso de no hacer Lockdown, las perdidas son del 38% de un PIB anual.
- Si la efectividad del confinamiento es mayor, entonces mayor es el tiempo y el rigor de la cuarentena.

- En el caso base, la cuarentena dura 4 meses con un peak del 60% de la población confinada.
- En el caso base, las perdidas con la medida óptima corresponde a un 28% de PIB anual, donde el 8% es debido al Lockdown. En caso de no hacer Lockdown, las perdidas son del 38% de un PIB anual.
- Si la efectividad del confinamiento es mayor, entonces mayor es el tiempo y el rigor de la cuarentena.
- Si la tada de letalidad es contaste, el Lockdown óptimo es prácticamente cero.

- En el caso base, la cuarentena dura 4 meses con un peak del 60% de la población confinada.
- En el caso base, las perdidas con la medida óptima corresponde a un 28% de PIB anual, donde el 8% es debido al Lockdown. En caso de no hacer Lockdown, las perdidas son del 38% de un PIB anual.
- Si la efectividad del confinamiento es mayor, entonces mayor es el tiempo y el rigor de la cuarentena.
- Si la tada de letalidad es contaste, el Lockdown óptimo es prácticamente cero.
- Si la tasa de letalidad inicial es menor, menor es el tiempo y rigor de la cuarentena.

- En el caso base, la cuarentena dura 4 meses con un peak del 60% de la población confinada.
- En el caso base, las perdidas con la medida óptima corresponde a un 28% de PIB anual, donde el 8% es debido al Lockdown. En caso de no hacer Lockdown, las perdidas son del 38% de un PIB anual.
- Si la efectividad del confinamiento es mayor, entonces mayor es el tiempo y el rigor de la cuarentena.
- Si la tada de letalidad es contaste, el Lockdown óptimo es prácticamente cero.
- Si la tasa de letalidad inicial es menor, menor es el tiempo y rigor de la cuarentena.
- A mayor tasa de reproducción del virus, mayor duración y rigor de la cuarentena.

- En el caso base, la cuarentena dura 4 meses con un peak del 60% de la población confinada.
- En el caso base, las perdidas con la medida óptima corresponde a un 28% de PIB anual, donde el 8% es debido al Lockdown. En caso de no hacer Lockdown, las perdidas son del 38% de un PIB anual.
- Si la efectividad del confinamiento es mayor, entonces mayor es el tiempo y el rigor de la cuarentena.
- Si la tada de letalidad es contaste, el Lockdown óptimo es prácticamente cero.
- Si la tasa de letalidad inicial es menor, menor es el tiempo y rigor de la cuarentena.
- A mayor tasa de reproducción del virus, mayor duración y rigor de la cuarentena.
- A menos valor social de la vida, menor duración y rigor de la cuarentena.

Fin 1