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Chapter 4
BOLTZMANN-Like Equations

4.1 Introduction

In the following we will assume to be confronted with systems that consist of N
elements (subsystems) α. If the dynamics of the system is mainly given by pair inter-
actions of the elements (like e.g. in a rarefied gas) it is plausible to use BOLTZMANN

equations for its description. A typical example of application is a chemical reaction

B + C ! BC (4.1)

where the different states xα ∈ {B, C} distinguish whether an atom α is bounded
or not (cf. [11, 167]). Apart from pair interactions, the more general ‘BOLTZMANN-
like equations’ additionally take into account spontaneous transitions and are the
main topic of Chaps. 9 and 10. Interrelations and differences between spontaneous
transitions and direct pair interactions will be discussed in detail in Sect. 4.5.

The BOLTZMANN equation, like the master equation, has a structure of the form
(3.1). However, the flows of the BOLTZMANN equation are proportional to the prob-
abilities of the states of both interacting subsystems. They depend on the square
of the probability distribution and thus the solution is difficult. In the case of the
gaskinetic BOLTZMANN equation the stationary solution can be found by means of
the H-theorem. An evaluation of the time-dependent solution is usually very com-
plicated and bases, in most cases, on a recursive method.

The derivation of the BOLTZMANN-like equations can be subdivided into the
following steps: First, we combine the states

xα = (xα1, . . . , xαi , . . . , xαm)tr ∈ γα (4.2)

of all N elements α in the state vector

X ≡ (. . . , X I , . . . )
tr := (x1, . . . , xα, . . . , xN )tr (4.3)

of the total system which has M components (M := m N , I := (α, i)tr). γα means
the set of all possible states x of element α and will be denoted as γα-space. For
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84 4 BOLTZMANN-Like Equations

reasons of simplicity we have assumed by (4.2) that the state space γα has the same
dimension m for each subsystem. This is no restriction since, if a system can be
characterized by a smaller number mα < m of variables, the surplus components
xα j with mα < j ≤ m can be set to zero.

Next we confine ourselves to spontaneous transitions and pair interactions, i.e.
simultaneous interactions between three or more subsystems will be neglected
(though a treatment of these is also possible; cf. Sect. 5.4 and [40, 41, 277]). The
resulting equations can be reduced to equations for the probability distributions
Pα(xα, t) of the subsystems α but they depend on the pair distribution functions
Pαβ(xα, xβ; t). In order to obtain closed equations we assume the factorization of
the pair distribution functions (i.e. the statistical independence of the elements).
Corrections for cases where this assumption is not justified are the topic of Sect. 5.4.

Finally, if we distinguish only a few types a of elements, the number of equations
reduces drastically. The result are the BOLTZMANN-like equations.

4.2 Derivation

First, for the derivation of the BOLTZMANN-like equations from master equation
(3.5) we introduce the vectors

Xα := (0, . . . , 0, xα, 0, . . . , 0)tr , (4.4)

Xα1...αk :=
k∑

i= 1

Xαi , (4.5)

and

Yα1...αk := X − Xα1...αk + Y α1...αk . (4.6)

They allow the decomposition of the transition rates

w(X ′|X; t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wα1(Y
α1 |Xα1; t) if X ′ = Yα1

wα1α2(Y
α1α2 |Xα1α2; t) if X ′ = Yα1α2

...
...

wα1...αN (Y α1...αN |Xα1...αN ; t) if X ′ = Yα1...αN

0 otherwise

(4.7)

into contributions

wα1...αk (Y
α1...αk |Xα1...αk ; t) ≡ wα1...αk (yα1 , . . . , yαk |xα1 , . . . , xαk ; t) (4.8)
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which describe the interactions between k subsystems. In order to exclude self-
interactions of an element we set

wα1...αk ≡ 0 if two subscripts αi , α j agree. (4.9)

For most chemical reactions [11, 167] and many other cases the contributions
with k ≤ 2 are the most important ones because simultaneous interactions between
three or more elements are rare. Hence the terms with k > 2 will be neglected in the
following. Then master equation (3.5a) obtains the form

d
dt

P(X, t)

=
∑

β

∑

Yβ

[
wβ(Xβ |Y β; t)P(Yβ , t)− wβ(Y β |Xβ; t)P(X, t)

]

+ 1
2

∑

β,γ

∑

Yβγ

[
wβγ (Xβγ |Yβγ ; t)P(Yβγ , t)− wβγ (Yβγ |Xβγ ; t)P(X, t)

]

=
∑

β

∑

yβ

[
wβ(xβ |yβ; t)P(Yβ , t)− wβ(yβ |xβ; t)P(X, t)

]

+ 1
2

∑

β,γ

∑

yβ ,yγ

[
wβγ (xβ , xγ |yβ , yγ ; t)P(Yβγ , t)

− wβγ (yβ , yγ |xβ , xγ ; t)P(X, t)
]
. (4.10)

The factor 1/2 results from

∑

α1,...,αk
(α1<···<αk )

= 1
k!

∑

α1,...,αk
(αi ̸= α j )

(4.11)

and ensures that identical transitions will not be counted twice. (There exist k! per-
mutations (interchanges) (β1, . . . ,βk) of the k elements αi ∈ {α1, . . . ,αk}).

Now let us introduce the multi-particle distribution functions

Pα1...αk (xα1 , . . . , xαk ; t) :=
∑

xβ

Pα1...β...αk (xα1 , . . . , xβ , . . . , xαk ; t) (4.12a)

for the k particles α1, . . . ,αk and introduce the notation

P1...N (x1, . . . , xN ; t) ≡ P(x1, . . . , xN ; t) . (4.12b)

The summation of (4.10) over all xβ ∈ γβ with β ̸= α (using relations which are
analogous to (3.94)) leads to



86 4 BOLTZMANN-Like Equations

d
dt

Pα(xα, t) =
∑

yα

[
wα(xα |yα; t)Pα(yα, t)− wα(yα |xα; t)Pα(xα, t)

]

+
∑

yα

[∑

β

∑

yβ

∑

xβ

wαβ(xα, xβ |yα, yβ; t)Pαβ(yα, yβ; t)

−
∑

β

∑

yβ

∑

xβ

wαβ(yα, yβ |xα, xβ; t)Pαβ(xα, xβ; t)
]

(4.13)

with

∑

xα

Pα(xα, t) = 1 . (4.14)

Due to the dependence on the pair distribution functions Pαβ(xα, xβ; t) Eq. (4.13)
are not closed. The equations for the pair distribution functions which can be
derived from (4.10), however, depend on the three-particle distribution functions
Pαβγ (xα, xβ , xγ ; t) etc. As a consequence, a hierarchy of non-closed equations (cf.
[170], pp. 74ff.) results so that an approximation becomes necessary. Assuming a
factorization of the pair distribution functions of the form

Pαβ(xα, xβ; t) ≈ Pα(xα, t)Pβ(xβ , t) (4.15)

we arrive at the closed equations

d
dt

Pα(xα, t) =
∑

yα

[
wα(xα|yα; t)Pα(yα, t)− wα(yα|xα; t)Pα(xα, t)

]

+
∑

yα

[(∑

β

∑

yβ

∑

xβ

wαβ(xα, xβ |yα, yβ; t)Pβ(yβ , t)
)

Pα(yα, t)

−
(∑

β

∑

yβ

∑

xβ

wαβ(yα, yβ |xα, xβ; t)Pβ(xβ , t)
)

Pα(xα, t)
]

(4.16)

(cf. [170], pp. 72ff., and [25, 93, 94, 162, 224, 240]). wα(yα|xα; t) describes spon-
taneous or externally induced transitions of element α from state xα to state yα .
wαβ(yα, yβ |xα, xβ; t) reflects pair interactions between two systems α and β due to
which their states change from xα and xβ to yα and yβ respectively. Introducing the
effective transition rates

wα(x ′|x; t) := wα(x ′|x; t) +
∑

β

∑

y′

∑

y

wαβ(x ′, y′|x, y; t)Pβ(y, t) , (4.17a)
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Eq. (4.16) can be cast into the simple form

d
dt

Pα(x, t) =
∑

x ′

[
wα(x |x ′; t)Pα(x ′, t)− wα(x ′|x; t)Pα(x, t)

]
. (4.17b)

Factorization assumption (4.15) is exactly valid only if two arbitrary subsystems α
and β are statistically independent. It is approximately justified if the interactions
are weak (wαβ ≈ 0) or if the correlations between two subsystems α and β due
to pair interactions are soon destroyed (cf. also (5.20)). Equation (4.15) is often
substantiated by the assumption of ‘molecular chaos’ [154] (cf. Sect. 10.3.4). For
the case that (4.15) is violated there exist methods for the calculation of corrections
(cf. [25, 54]). Moreover, a generalization of the above equations to simultaneous
interactions of arbitrarily many elements is possible (cf. Sect. 5.4).

4.3 Subdivision into Several Types of Subsystems

Usually the immense number N of subsystems α can be divided into A types a
which are characterized by certain properties, e.g. by the kind of interaction. In
example (4.1) one type of subsystems would consist of the molecules of sort B and
a second one of the molecules of sort C .
Now let Na be the number of elements α ∈ a (i.e. of type a). Then we have

A∑

a= 1

Na = N . (4.18)

If subsystems α ∈ a of the same type a are not further distinguished this implies

γα ≡ γa if α ∈ a , (4.19a)

Pα ≡ Pa if α ∈ a , (4.19b)

wα ≡ ŵa if α ∈ a , (4.19c)

and

wαβ ≡

⎧
⎨

⎩
ŵab if α ̸= β, α ∈ a, β ∈ b

0 if α = β
(4.19d)

where ŵ.. are the individual transition rates. Furthermore, after introducing the nota-
tions

wa := ŵa (4.20a)
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and

wab :=

⎧
⎨

⎩
Nb · ŵab if b ̸= a

(Na − 1) · ŵab if b = a,
(4.20b)

from (4.14) and (4.17) we gain
∑

x

Pa(x, t) = 1 (4.21)

and

d
dt

Pa(x,t) =
∑

x ′

[
wa(x |x ′; t)Pa(x ′, t)− wa(x ′|x; t)Pa(x, t)

]
(4.22a)

with the effective transition rates

wa(x ′|x; t) := wa(x ′|x; t) +
∑

b

∑

y′

∑

y

wab(x ′, y′|x, y; t)Pb(y, t) . (4.22b)

By distinguishing only a few types of subsystems the number of variables is consid-
erably reduced if A ≪ N or Na ≫ 1. Thus (4.22) becomes accessible to a treatment
by computers.

4.4 Properties

4.4.1 Non-negativity and Normalization

If the condition Pa(x, t0) ≥ 0 is fulfilled at a certain time t0 for all states x , the
non-negativity defined by Pa(x, t) ≥ 0 will be guaranteed for all later times t > t0.
Moreover, despite the applied factorization assumption (4.15) we can derive

d
dt

(
∑

x

Pa(x, t)

)

= 0 , i.e.
∑

x

Pa(x, t) = const. (4.23)

which allows the normalization of distribution Pa(x, t). The corresponding proofs
are analogous to those in Sects. 3.3.1 and 3.3.2.

4.4.2 The Gaskinetic BOLTZMANN Equation

The BOLTZMANN equation for fairly rare gases is a special case of Eqs. (4.22a,). It
results, if one combines in the state

x := (r, v) (or y := (s, w)) (4.24)
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the place r (or s) and the velocity v (or w) of a gas particle. By types a we distinguish
different sorts of particles. The spontaneous state changes are given by the motion

dr
dt

= v (4.25)

and the acceleration

dv

dt
= d2r

dt2 := Fa(t)
ma

(4.26)

where Fa(t) is the force exerted on a particle of mass ma . They are described by the
transition rates

ŵa(r ′, v′|r, v; t) := lim
∆t→0

1
∆t

δ

(
r ′ −

(
r + v∆t

))
δ

(

v′ −
(

v + Fa(t)
ma

∆t
))

.

(4.27)

In the KRAMERS-MOYAL representation (cf. Sect. 6.2) they contribute to Eq. (4.22)
with the divergence terms

−∇r

[
vPa(r, v; t)

]
−∇v

[
Fa(t)
ma

Pa(r, v; t)
]

. (4.28)

Additionally, state changes result from scattering processes of particles (from direct
pair interactions). These are described by the transition rates

ŵab(x ′, y′|x, y; t) := ŵ′ab(v
′, w′|v, w)δ(r ′ − r)δ(s′ − s)δ(r − s) (4.29)

which reflect the collisions of two particles at location r = s and the resulting
velocity changes.

With respect to the densities

ρ(a, r, v; t) := Na Pa(r, v; t) (4.30)

where Na denotes the number of particles of sort a within the considered volume
V , we have the gaskinetic BOLTZMANN equation [26, 154, 163]

∂

∂t
ρ(a, r, v; t)

= −∇r

[
vρ(a, r, v; t)

]
− ∇v

[
Fa(t)
ma

ρ(a, r, v; t)
]

+
∑

b

∫
d3v′

∫
d3w

∫
d3w′ ŵ ′ab(v, w|v′, w′)ρ(a, r, v′; t)ρ(b, r, w′; t)

−
∑

b

∫
d3v′

∫
d3w

∫
d3w′ŵ ′ab(v

′, w′|v, w)ρ(a, r, v; t)ρ(b, r, w; t) .

(4.31)
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In most cases the pair interaction rates ŵ ′ab are expressed by the differential scat-
tering cross section

d6σ ′ab ≡ d6σ ′ab(v
′, w′|v, w) := ŵ ′ab(v

′, w′|v, w)d3v′d3w′

∥v − w∥ . (4.32)

Furthermore we have

ŵ ′ab(v, w|v′, w′) = ŵ ′ab(v
′, w′|v, w) (4.33)

since the pair interaction rates ŵab are symmetrical (cf. (3.88)):

ŵab(x, y|x ′, y′) = ŵab(x ′, y′|x, y) . (4.34)

(This symmetry is a consequence of the time reversal invariance and the isotropy
of space; cf. [154], pp. 69ff.) Consequently, the gaskinetic BOLTZMANN equa-
tion (4.31) can be written in the form

d
dt
ρ(a, r, v; t) =

∑

b

∫
d3w

∫
d6σ ′ab ∥v − w∥

[
ρ(a, r, v′; t)ρ(b, r, w′; t)

−ρ(a, r, v; t)ρ(b, r, w; t)
]
. (4.35)

Here

d
dt
ρ(a, r, v; t) : = ∂

∂t
ρ(a, r, v; t) + ∇r ·

[
vρ(a, r, v; t)

]
+ ∇v ·

[
Fa(t)
ma

ρ(a, r, v; t)
]

= ∂

∂t
ρ(a, r, v; t) + v · ∇rρ(a, r, v; t) + Fa(t)

ma
· ∇vρ(a, r, v; t)

(4.36)
is the total (substantial) time derivative which describes the temporal change of the
density ρ(a, r, v; t) in a transformed coordinate system which moves along with
velocity (v, Fa/ma)tr. Obviously, dρ(a, r, v; t)/dt is only given by the scattering
processes. In this sense, BOLTZMANN equation (4.35) is already determined by pair
interactions. In contrast to this, the terms due to spontaneous transitions usually
cannot be eliminated from the general Eq. (4.22): In the case of non-deterministic
transition rates wa(x ′|x; t) the KRAMERS-MOYAL expansion leads not only to
divergence terms but also to further contributions which cannot be eliminated by
a transformation.

In the following, Eq. (4.22) will be called ‘BOLTZMANN equations’ if these are
solely given by pair interactions. If, in addition to pair interactions, spontaneous
transitions play a role, it is reasonable to speak of ‘BOLTZMANN-like equations’.
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4.4.3 The H-Theorem for the Gaskinetic BOLTZMANN Equation

For the gaskinetic BOLTZMANN equation (4.31) there exists, analogous to
Sect. 3.3.5, a LIAPUNOV function

H(t) :=
∑

a

∫
d6x ρ(a, x; t) ln ρ(a, x; t) (4.37)

with the property

d H
dt
≤ 0 . (4.38)

Again, this causes the system to approach an equilibrium. Except for an affine
transformation, H(t) is identical with BOLTZMANN’s entropy function

S(t) := −k
∑

a

∫
d6x P(a, x; t) log2 P(a, x; t) (4.39)

with

P(a, x; t) := Na

N
Pa(x, t) = ρ(a, x; t)

N
. (4.40)

For the proof of (4.38) we first show

d H
dt

=
∑

a

∫
d6x

[
∂ρ(a, x; t)

∂t
ln ρ(a, x; t) + ∂ρ(a, x; t)

∂t

]

= −
∑

a

∫
d6x ln ρ(a, x; t)

{
∇r

[
vρ(a, x; t)

]
+ ∇v

[
Fa(t)
ma

ρ(a, x; t)
]}

+
∑

a,b

∫ ∫ ∫ ∫
ln ρ(a, x; t)

[
ŵab(x, y|x ′, y′)ρ(a, x ′; t)ρ(b, y′; t)

− ŵab(x ′, y′|x, y)ρ(a, x; t)ρ(b, y; t)
]
d6x d6x ′ d6 y d6 y′ (4.41)

= −
∑

a

∫
d6x

{
∇r

[
v
(
ρ(a, x; t) ln ρ(a, x; t)− ρ(a, x; t)

)]

+ ∇v
[

Fa(t)
ma

(
ρ(a, x; t) ln ρ(a, x; t)− ρ(a, x; t)

)]}

+
∑

a,b

∫ ∫ ∫ ∫
ln ρ(a, x; t)

[
ŵab(x, y|x ′, y′)ρ(a, x ′; t)ρ(b, y′; t)

− ŵab(x ′, y′|x, y)ρ(a, x; t)ρ(b, y; t)
]
d6x d6x ′ d6 y d6 y′ . (4.42)
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The term

∑

a

∫
d6x

∂ρ(a, x; t)
∂t

=
∑

a

∂

∂t

∫
d6x ρ(a, x; t) =

∑

a

∂Na

∂t
= ∂N

∂t
(4.43)

vanishes on the condition that the considered system is a closed system which
implies a conservation of the number of particles. The divergence terms can be
transformed into surface integrals by using GAUSS’ divergence theorem (cf. (6.16)).
Due to

lim
∥v∥→∞

ρ(a, r, v; t) = 0 , (4.44)

however, these provide no contributions. Thus the following remains:

d H
dt

=
∑

a,b

∫ ∫ ∫ ∫
ln ρ(a, x; t)

[
ŵab(x, y|x ′, y′)ρ(a, x ′; t)ρ(b, y′; t)

− ŵab(x ′, y′|x, y)ρ(a, x; t)ρ(b, y; t)
]
d6x d6x ′ d6 y d6 y′ (4.45)

=
∑

a,b

∫ ∫ ∫ ∫ [
ln ρ(a, x; t)− ln ρ(a, x ′; t)

]

× ŵab(x, y|x ′, y′)ρ(a, x ′; t)ρ(b, y′; t)d6x d6x ′ d6 y d6 y′ (4.46)

= 1
2

∑

a,b

∫ ∫ ∫ ∫ [
ln ρ(a, x; t)− ln ρ(a, x ′; t) + ln ρ(b, y; t)−ln ρ(b, y′; t)

]

× ŵab(x, y|x ′, y′)ρ(a, x ′; t)ρ(b, y′; t)d6x d6x ′ d6 y d6 y′ . (4.47)

From (4.45) we come to (4.46) by renaming the variables of the second term in
accordance with x ↔ x ′ and y ↔ y′. The identity of (4.46) and (4.47) results
by interchanging the variables of two interacting particles α, β and taking into
account

ŵba(y, x |y′, x ′) = wβα(y, x |y′, x ′) = wαβ(x, y|x ′, y′) = ŵab(x, y|x ′, y′) .

(4.48)

On the condition

∫
d6x ′

∫
d6 y′ ŵab(x, y|x ′, y′) =

∫
d6x ′

∫
d6 y′ ŵab(x ′, y′|x, y) (4.49)
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which is fulfilled due to (4.34) we further have

1
2

∑

b

∫ ∫ ∫ ∫
ŵab(x, y|x ′, y′)

[
ρ(a, x ′; t)ρ(b, y; t)

− ρ(a, x; t)ρ(b, y; t)
]
d6x d6x ′ d6 y d6 y′

= 1
2

∑

b

∫ ∫ ∫ ∫ [
ŵab(x, y|x ′, y′)ρ(a, x ′; t)ρ(b, y′; t)

− ŵab(x ′, y′|x, y)ρ(a, x; t)ρ(b, y; t)
]
d6x d6x ′ d6 y d6 y′

= 0 . (4.50)

This can immediately be seen by renaming the variables in the second term in
accordance with x ↔ x ′ and y ↔ y′.

Now, formally adding in the vanishing term (4.50) to (4.47) and introducing the
abbreviations

zab ≡ zab(x, y; x ′, y′; t) := ρ(a, x ′; t)ρ(b, y′; t)
ρ(a, x; t)ρ(b, y; t)

, (4.51a)

z ′ab ≡ z ′ab(v, w; v′, w′; t) := ρ(a, r, v′; t)ρ(b, r, w′; t)
ρ(a, r, v; t)ρ(b, r, w; t)

, (4.51b)

we find the relation

d H
dt

= −1
2

∑

a,b

∫ ∫ ∫ ∫
ρ(a, x; t)ρ(b, y; t)

(
zab ln zab − zab + 1

)

× ŵab(x, y|x ′, y′)d6x d6x ′ d6 y d6 y′

= −1
2

∑

a,b

∫ ∫ ∫ ∫ ∫
ρ(a, r, v; t)ρ(b, r, w; t)

(
z ′ab ln z ′ab − z ′ab + 1

)

× ŵ ′ab(v, w|v′, w′)d3v d3v′ d3w d3w′ d3r

≤ 0 (4.52)

because of

z ′ab ln z ′ab − z ′ab + 1 ≥ 0 for z ′ab > 0 . (4.53)

Consequently, a system described by the gaskinetic BOLTZMANN equation
(4.35) moves towards an equilibrium. However, without the validity of relation
(4.49) a BOLTZMANN equation can also show an oscillatory or chaotic behaviour
(cf. Sects. 10.3.2 and 10.3.4).
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4.4.4 Solution of the Gaskinetic BOLTZMANN Equation

According to (4.52), the relation d H/dt = 0 presupposes that the equilibrium con-

dition z ′ab
!= 1 is fulfilled. This implies the condition

ψa(v) + ψb(w)
!= ψa(v′) + ψb(w′) (4.54a)

with

ψa(v) := ln ρ(a, r, v) . (4.54b)

Obviously, (4.54) is satisfied by the collisional invariants

mass ma , (4.55a)

momentum mavi , (4.55b)

energy
ma

2
∥v∥2 = ma

2

∑

i

(vi )
2 , (4.55c)

and linear combinations of these. Inserting

ψa(v) := c1
ama +

∑

i

c2
a,i mavi + c3

a
ma

2

∑

i

(vi )
2 (4.56)

into (4.54) and representing the density of particles of sort a at location r by ρ(a, r)

we obtain

ρ(a, r, v) = ρ(a, r)Pa(v) (4.57a)

with the MAXWELL-BOLTZMANN distribution

Pa(v) :=
∏

i

(
1√

2πσa
e−(vi−⟨vi ⟩a)2/(2σa)

)
= 1

(2πσa)3/2 e−(v−⟨v⟩a)2/(2σa)
.

(4.57b)
Here ⟨v⟩a has the meaning of the mean velocity of the particles of sort a. σa is
related to their absolute temperature T ′a via the BOLTZMANN constant k:

σa = kT ′a . (4.58)

For the determination of the time-dependent solution of the gaskinetic BOLTZ-
MANN equation there exists a (rather complicated) recursive method which was
developed by CHAPMAN [38] and ENSKOG [64] (cf. [170], pp. 187ff.).
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4.5 Comparison of Spontaneous Transitions
and Direct Interactions

In the following we will elaborate the interrelations and differences between spon-
taneous transitions and direct interactions.

4.5.1 Transitions Induced by Interactions

Let us assume that we have A′ ≡ A + B types a of elements and that the elements
of all types are able to change their states only by pair interactions. Provided the
dynamics of all A′ types is known, it is described by the BOLTZMANN equations

d
dt

Pa(x, t) =
A′∑

b= 1

∑

x ′

∑

y

∑

y′
wab(x, y|x ′, y′; t)Pb(y′, t)Pa(x ′, t)

−
A′∑

b= 1

∑

x ′

∑

y

∑

y′
wab(x ′, y′|x, y; t)Pb(y, t)Pa(x, t) (4.59)

(a ∈ {1, . . . , A + B}). If, however, only the dynamics of the A types a ∈ {1, . . . , A}
is known, it obeys the BOLTZMANN-like equations

d
dt

Pa(x, t) =
∑

x ′

[
wa(x |x ′; t)Pa(x ′, t)− wa(x ′|x; t)Pa(x, t)

]
(4.60a)

with

wa(x ′|x; t) := wa(x ′|x; t) +
A∑

b= 1

∑

y

∑

y′
wab(x ′, y′|x, y; t)Pb(y, t) . (4.60b)

The connection with (4.59) is given by

wa(x ′|x; t) :=
A+ B∑

b= A+ 1

∑

y

∑

y′
wab(x ′, y′|x, y; t)Pb(y, t) . (4.60c)

So the transition rates wa may describe transitions which are induced by unknown
pair interactions.
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4.5.2 Exponential Function and Logistic Equation

Let us consider the case of one type a of subsystems (A = 1) which can change
between S = 2 states x ≡ x ∈ {1, 2}. Then there is

P(2, t) = 1− P(1, t) (4.61)

where subscript a was omitted. If only spontaneous transitions occur and the tran-
sition rates are time-independent, the corresponding BOLTZMANN-like equation is
the master equation

d
dt

P(1, t) = w(1|2)P(2, t)− w(2|1)P(1, t)

= w(1|2)−
[
w(1|2) + w(2|1)

]
P(1, t) . (4.62)

Its solution is the exponential function

P(1, t) = P0(1) +
[

P(1, t0)− P0(1)
]
e−λ(t−t0) (4.63a)

with

P0(1) := w(1|2)

w(1|2) + w(2|1)
≤ 1 (4.63b)

and

λ := w(1|2) + w(2|1) . (4.63c)

If, in contrast to this, only direct pair interactions take place and if the transition
rates are again time-independent, the corresponding BOLTZMANN-like equation is
the BOLTZMANN equation

d
dt

P(1, t) =
[
w(1, 1|2, 2)P(2, t)P(2, t) + w(1, 2|2, 2)P(2, t)P(2, t)

]

−
[
w(2, 1|1, 2)P(2, t)P(1, t) + w(2, 2|1, 2)P(2, t)P(1, t)

]

+
[
w(1, 1|2, 1)P(1, t)P(2, t) + w(1, 2|2, 1)P(1, t)P(2, t)

]

−
[
w(2, 1|1, 1)P(1, t)P(1, t) + w(2, 2|1, 1)P(1, t)P(1, t)

]

≡ −C1[P(1, t)]2 + C2 P(1, t) + C3 (4.64)

where C1, C2, and C3 are constants that are determined by the pair interaction rates
w together with (4.61). After introducing

Q(1, t) := P(1, t)− C and C := C2 −
√

(C2)2 + 4C1C3

2C1
(4.65)
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we can transform (4.64) into the logistic equation

d
dt

Q(1, t) = r Q(1, t)
(

1− Q(1, t)
Q0(1)

)
(4.66)

with

r := C2 − 2C1C =
√

(C2)2 + 4C1C3 (4.67a)

and

Q0(1) := r
C1

=
√

(C2)2 + 4C1C3

C1
. (4.67b)

(4.66) has the solution

Q(1, t) = Q0(1)

1 + Q0(1)− Q(1, t0)
Q(1, t0)

e−r(t−t0)
. (4.68)

The exponential solution of (4.62) and the logistic solution of (4.64) are compared
with each other in Fig. 4.1.

Fig. 4.1 Comparison of an
exponential solution (—) and
a solution of the logistic
equation (– –)

4.5.3 Stationary and Oscillatory Solutions

In the case of exclusively spontaneous transitions with time-independent transition
rates (wa(x ′|x; t) ≡ wa(x ′|x)) the BOLTZMANN-like equations for the temporal
evolution of the distributions Pa(x, t) have the form of master equations (cf. (4.62)).
According to the discussion in Sect. 3.3.5, Pa(x, t) converges in the course of time
to a unique stationary equilibrium distribution P0

a (x).
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In contrast to this, there exist BOLTZMANN equations for pair interactions which
have various stationary solutions, oscillatory solutions, or chaotic solutions even
in the case of time-independent pair interaction rates (cf. Sects. 10.3.2 and 10.3.4).
However, this presupposes that condition (4.49) is violated so that the H -theorem
does not hold.


