

Seminario de Grafos

Speaker: Ana Laura Trujillo (CMM)

Title: Separating the edges of a graph by a linear number of paths.

cmm.uchile.cl

Beauchef 851, Edificio Norte, piso 7 Santiago, CHILE CP 837 0456

tel +56 2 2978 4870

Abstract: A collection \$\mathcal{P}\$ of paths in a graph \$G\$ is called a \textit{strongly-separating path system} if, for any two edges \$e\$ and \$f\$ in \$G\$, there exist paths \$P_e,P_f\in \mathcal{P}\$ such that \$e\$ belongs to \$P_e\$ but not to \$P_f\$, and \$f\$ belongs to \$P_f\$ but not to \$P_e\$. If \$\mathcal{P}\$ contains a path that includes one edge but not the other, it is called a \textit{weakly-separating path system}. In 2014, Falgas-Ravry, Kittipassorn, Korándi, Letzter, and Narayanan conjectured that every graph on \$n\$ vertices admits a weakly-separating path system of size \$O(n)\$. Independently, in 2016, Balogh, Csaba, Martin, and Pluhár posed a similar conjecture for strongly-separating path systems. In 2022, Letzter made significant progress by proving the existence of a strongly-separating path system of size \$n\log^\star n\$. More recently, in 2023, Bonamy, Botler, Dross, Naia, and Skokan confirmed the conjecture of Balogh et al., showing that every graph on \$n\$ vertices admits a strongly-separating path system of size \$19n\$. In this talk, we will present the construction and key ideas behind the proof by Bonamy et al., which establishes this improved bound.

Viernes 27 de Septiembre, 2024 / 10.00-11.00, Sala John Von Neumann (7° Piso)

