

cmm.uchile.cl

Beauchef 851, Edificio Norte, piso 7 Santiago, CHILE CP 837 0456

tel +56 2 2978 4870

CMM PDE Seminar

January 20th, at 12:10 pm

Speaker: Donato Vásquez

"Hamilton-Jacobi-Bellman Solution Approximation with Machine Learningfor the Synthesis of Optimal Feedbacks"

feedbacks problems Abstract: The optimal for design of control is а challenging task. The classical method for tackling this problem is This finding based on dynamic programming. involves the value function Hamilton-Jacobi-Bellman of the control problem by solving the (HJB) equation. However, this equation suffers from the "curse of dimensionality", the computational cost of solving i.e., it grows exponentially with the dimension of the underlying control problem. For this reason, several methods based on machine learning have been proposed solve HJB. Although numerical experiments have shown still promising results, it is necessary find theoretical guarantees to on the performance of this type of one of the methods. In this regard, main difficulties is the low regularity of HJB solutions.

this talk we will present results related to the approximation of solutions. These results allow to find bounds for the performance us feedback generated by machine learning methods. It is important note that these bounds only require the value function to be Hölder continuous. while similar results in the literature require the value function at least C^1. To illustrate the importance of bounds, to be family control problems indexed by а penalty coefficient be coefficient presented. This controls the regularity of the value function, that, for values close to the value function C^2, SO zero whereas, it becomes non-differentiable when it is sufficiently application of these results to the method Additionally, the called Scheme (AFLS), which consists Averaged Feedback Learning of solving án control problem, will be presented. Finally, averaged version of the the this method to solve problems with high dimensionality be shown through numerical examples.

cmm.uchile.cl

Beauchef 851, Edificio Norte, piso 7 Santiago, CHILE CP 837 0456

tel +56 2 2978 4870

January 20th, at 04:10 pm

Speaker: Felipe Poblete

"Nonexistence and uniqueness of breathers for modified Zakharov-Kuznetsov models."

Abstract:

In this talk we will consider the (focusing) modi@ed Zakharov-Kuznetsov (mZK) in dimension N \geq 1: ut + (Δu + 2u3)x1 = 0, for a given real-valued function u = u(t, x), where $t \in R$ and $x \in RN$. This equation is a specialcase of the completely integrable modiled Korteweg-de Vries (mKdV) equation ut + (uxx +2u3)x = 0. During this talk we will present results related to existence and nonexistence of quasimonochromatic breathers solution for the mZK equation, depending on the dimnesion N.

Additionally we will show how the famous breather solution of the mKdV equation represents a unique instance of a quasimonochromatic breathers solution

Venue: DIM seminar room, Beauchef 851, 5th floor.

Zoom:

https://uchile.zoom.us/j/96642349167?pwd=MkRVbWxzOFBUUXICTWFicW0reWZ 6dz09

For further information, see our webpage: https://eventos.cmm.uchile.cl/pdeseminar/

