Optimization and Equilibrium

Iterative regularization via a dual diagonal descent method

Event Date: Dec 14, 2016 in Optimization and Equilibrium, Seminars

   Abstract: In the context of linear inverse problems, we propose and study general iterative regularization method allowing to consider classes of regularizers and data-fit terms. The algorithm we propose is based on a primal-dual diagonal descent method, designed to solve hierarchical optimization problems. Our analysis establishes convergence as well as stability results, in presence of error in the data. In this noisy case, the number of iterations is shown to act as a regularization parameter, which makes our algorithm an iterative regularization...

Read More

Does convexity arise in optimization naturally?

Event Date: Nov 16, 2016 in Optimization and Equilibrium, Seminars

Abstract Convexity is one of the conditions that any researcher may desire to have when dealing with problems in Optimization. Thus, the lack of standard convexity provides an interesting challenge in mathematics. In this talk we show various instances from mathematical programming, differential inclusions to calculus of variations, where convexity is present in one way or in another. Among the issues to be described lie: strong duality, KKT optimality conditions; joint-range and the S-lemma for a pair of (not necessarily homogeneous) quadratic functions; optimal value functions; local...

Read More

The Schur property over some Lipschitz-free spaces.

Event Date: Oct 26, 2016 in Optimization and Equilibrium, Seminars

Abstract: Adjunto.

Read More

On the Convergence of Projection Method for Co-coercive Variational Inequalities

Event Date: Oct 19, 2016 in Optimization and Equilibrium, Seminars

Abstract: We revisit the basic projection method for solving co-coercive  variational inequalities in real Hilbert spaces. The weak and the strong convergence for the  iterative sequences generated by this method are studied. We also propose several examples to analyze  the obtained results. This is a joint work with Phan Tu Vuong.

Read More

Nonconvex sweeping processes involving maximal monotone operators

Event Date: Oct 05, 2016 in Optimization and Equilibrium, Seminars

Abstract: By using a regularization method, we study in this paper the global existence and uniqueness property of a new variant of nonconvex sweeping processes involving maximal monotone operators. The system can be considered as a maximal monotone differential inclusion under a control term of normal cone type forcing the trajectory to be always contained in the desired moving set. When the set is fixed, one can show that the unique solution is right-differentiable everywhere and its right-derivative is right-continuous.

Read More

Variations of the infimal convolution and application to the minimal time function.

Event Date: Aug 31, 2016 in Optimization and Equilibrium, Seminars

Abstract: We establish in the Banach setting a relationship between the variations of the infimal convolution of a fairly general function and a proper continuous convex function. Namely, we compare the Clarke subdifferential of all these functions at points where the infimal convolution is attained, or strongly attained. This work extends and adapts many of the existing results in the literature. We apply this work to investigate the differentiability of a minimal time function. We also discuss necessary optimality conditions for a location problem.

Read More