Differential Equations

Sobre ecuaciones tipo Cummins y convertidores de energía de olas.

Event Date: Nov 30, 1999 in Differential Equations, Seminars

Abstract:  En esta charla comenzaremos abordando algunas formulaciones recientes de las ecuaciones water-waves, para luego tomar ventaja de ellas y establecer algunos problemas de transmisión explícitos que describen interacciones fluido-estructuras. En una segunda parte estudiaremos el cómo bajo ciertas restricciones es posible obtener algunas generalizaciones de la ecuación de Cummins. Por último, mostraremos métodos con los cuales la comunidad que estudia la extracción de energía a partir de las olas del mar utiliza dichas ecuaciones integro-diferenciales para obtener energías limpias e...

Read More

Bianchi cosmologies with massless Vlasov matter.

Event Date: Jun 14, 2022 in Differential Equations, Seminars

Abstract: In this talk, I will give a short introduction to “mathematical cosmology” with a focus on the application of the kinetic theory in cosmology. As such, I will talk about Bianchi cosmologies, i.e., spatially homogeneous spacetimes that are governed by the Einstein equations which are coupled to massless collisionless (Vlasov) matter. Then, I will discuss their future attractors and show future stability of such models within Bianchi types I, II, and V symmetry class. The proof turns out to be more challenging compared to the corresponding massive case where the...

Read More

Integrability and the singular manifold method: a toolkit to determine soliton solutions.

Event Date: Jun 07, 2022 in Differential Equations, Seminars

Abstract: The Painlevé Property has proved to be a fruitful tool when it comes to identifying the integrability of nonlinear PDEs. The combination of this technique with the so-called singular manifold method offers an ideal framework to approach nonlinear integrable systems: it provides a systematic methodology to obtain the associated spectral problem, as well as a recursive procedure to determine soliton-like solutions. In this talk, we review the main characteristics of this setting, with applications on several examples related to Nonlinear Schrödinger equations, in which solutions as...

Read More

Modeling chemotaxis with a nonlinear Schrödinger equation: solitary waves.

Event Date: May 31, 2022 in Differential Equations, Seminars

Abstract: In this talk I will show how chemotaxis can be modeled by using a nonlinear Schrödinger equation with  well-known quantum dissipative mechanisms. This relation will allow us to find explicit new solitary wave solutions.  

Read More

Fractional Sobolev regularity for fully nonlinear elliptic equations.

Event Date: May 24, 2022 in Differential Equations, Seminars

Abstract:  We study high-order fractional Sobolev regularity for fully nonlinear, uniformly elliptic equations, in the presence of unbounded source terms. Our techniques are based on touching the solution with C1,α cone-like functions to produce a decay rate of the measure of certain sets.

Read More

Una nueva visión del Laplaciano fraccionario vía redes neuronales profundas.

Event Date: May 10, 2022 in Differential Equations, Seminars

Abstract:  El Laplaciano fraccionario ha sido fuertemente estudiado durante las últimas décadas. En esta charla presentamos un nuevo enfoque al problema de Dirichlet asociado, usando técnicas recientes de aprendizaje profundo. En efecto, últimamente se ha demostrado que las soluciones aciertas ecuaciones en derivadas parciales se pueden representar de manera estocástica, y aproximar dicha representación mediante redes neuronales profundas, superando la llamada mal dición de la dimensionalidad. Entre estas ecuaciones se encuentran las de tipo parabólicas sobre el espacio R^d, y las de tipo...

Read More