Resumen:
En los últimos años, el cálculo de primer orden desarrollado clasicamente en el marco de los espacios euclídeos, se ha extendido a espacios que no necesariamente están dotados de una estructura diferenciable. Una vertiente del cálculo de primer orden que se ha desarrollado en el contexto general de espacios métricos ha sido bajo la hipótesis de que nuestra espacio admita una medida doblante y una desigualdad de Poincaré. Dicha desigualdad crea una conexión entre la métrica, la medida y el módulo del gradiente, además de un nexo de union entre el comportamiento global y local de las funciones. En esta charla daremos una visión global del análisis en espacios métricos de medida desde el punto de vista de las desigualdades de Poincaré y estudiaremos qué tipo de información geométrica nos proporciona el hecho de que un espacio admita ese tipo de desigualdad.
Venue: Beauchef 851, Torre Norte, Sala de Seminarios John Von Neumann CMM.
Speaker: ESTIBALITZ DURAND CARTAGENA
Affiliation: Profesora UNED, España
Coordinator: Abderrahim Hantoute
Posted on Mar 3, 2015 in Optimization and Equilibrium, Seminars



Noticias en español
