Random time transformation analysis of Covid19 2020.

Abstract: The SIR epidemiological equations model new affected and removed cases as roughly proportional to the current number of infected cases. An alternative that has been considered in the literature will be adopted, in which the number of new affected cases is proportional to the α power of the number of infected cases. After arguing that α =1 models exponential growth while α <1 models polynomial growth, a simple method for parameter estimation in differential equations subject to noise, the random-time transformation RTT of Bassan, Meilijson, Marcus and Talpaz 1997, will be reviewed and applied in an attempt to settle the question as to the nature of Covid19.

Date: Jun 18, 2020 at 14:30:00 h
Venue: Modalidad Vía Online.
Speaker: Isaac Meilijson
Affiliation: Tel Aviv University
Coordinator: Profesores: Joaquín Fontbona & Daniel Remenik
More info at:
Event website
Abstract:
PDF

Posted on Jun 11, 2020 in Seminario Probabilidades CMM, Seminars