Abstract: Let $(M^n, [\hat{g}])$ be the conformal infinity of an asymptotically hyperbolic Einstein (AHE) manifold $(X^{n+1},g^+).$ We will take the scattering operator associated to the AHE filling in as the fractional conformal Laplacian. Equipped with fractional conformal Laplacians defined via the AHE manifold, we can define a fractional Yamabe problem, looking for a conformal metric of $(M^n,[\hat{g}])$ which has constant fractional scalar curvature. We will present some new developments on the fractional Yamabe problem assuming an AHE filling in.
Venue: Sala de Seminarios (5° piso), Facultad de Ciencias Físicas y Matemáticas (Edificio Beauchef 851), Universidad de Chile
Speaker: Sophie Aiken
Affiliation: University of California Santa Cruz.
Coordinator: Comité Organizador EDP
Posted on Nov 29, 2024 in Differential Equations, Seminars



Noticias en español
