SIPo (Seminario de Investigadores Postdoctorales)

Decidability of the isomorphism problem between constant-shape substitutions.

Event Date: Apr 21, 2025 in Seminars, SIPo (Seminario de Investigadores Postdoctorales)

Abstract: An important question in dynamical systems is the classification, i.e., to be able to distinguish two isomorphic dynamical systems. In this work, we focus on the family of multidimensional substitutive subshifts. Constant-shape substitutions are a multidimensional generalization of constant-length substitutions, where any letter is assigned a pattern with the same shape. We prove that in this class of substitutive subshifts, under the hypothesis of having the same structure, it is decidable whether there exists a factor map between two aperiodic minimal substitutive subshifts. The...

Read More

Shortest Odd path on undirected graphs with conservative weights.

Event Date: Mar 31, 2025 in Seminars, SIPo (Seminario de Investigadores Postdoctorales)

Abstract: We consider the Shortest Odd Path (SOP) problem, where given an undirected graph $G$, a weight function on its edges, and two vertices $s$ and $t$ in $G$, the aim is to find an $(s,t)$-path with odd length and, among all such paths, of minimum weight. For the case when the weight function is conservative, i.e., when every cycle has non-negative total weight, the complexity of the SOP problem had been open for 20 years, and was recently shown to be NP-hard. I’ll present a polynomial-time algorithm for the special case when the weight function is conservative and the set of...

Read More

The k-Yamabe flow and its solitons.

Event Date: Mar 17, 2025 in Seminars, SIPo (Seminario de Investigadores Postdoctorales)

Abstract: The Yamabe problem is a classical question in conformal geometry that seeks for existence of metrics with constant scalar curvature within a conformal class. The problem was posed by H. Yamabe in 1960 as a possible extension of the famous uniformization theorem, which states that every simply connected Riemann surface is conformally equivalent to the open unit disk, the complex plane or the Riemann sphere. After the conjecture was already confirmed by the work of R. Schoen, an alternative approach was proposed by R.Hamilton in 1989. He suggested to use a geometric flow, which is...

Read More

Statistical, mathematical, and computational methods for the advancement of ecology and climate change biology.

Event Date: Dec 02, 2024 in Seminars, SIPo (Seminario de Investigadores Postdoctorales)

Abstract: I will delve into three key topics of my research in quantitative ecology and how the outcomes contribute to understanding and preventing biodiversity loss. In each case, I will describe the ecological context, the data at hand, and the primary modeling tools used to address the problems of interest. First, I will talk about optimal survey design, which involves techniques to efficiently estimate population density by balancing sample size, spatial distribution, and survey effort. Next, I will explain how statistical calibration techniques are applied for error correction and data...

Read More

A stroll through monotone inclusion problems and their splitting algorithms.

Event Date: Nov 18, 2024 in Seminars, SIPo (Seminario de Investigadores Postdoctorales)

Abstract: Many situations in convex optimization can be modeled as the problem of finding a zero of a monotone operator, which can be regarded as a generalization of the gradient of a differentiable convex function. In order to numerically address this monotone inclusion problem it is vital to be able to exploit the inherent structure of the monotone operator defining it. The algorithms in the family of the splitting methods are able to do this by iteratively solving simpler subtasks which are defined by separately using some parts of the original problem. In this talk, we will introduce...

Read More

Manifold Learning, Diffusion-Maps and Applications.

Event Date: Nov 04, 2024 in Seminars, SIPo (Seminario de Investigadores Postdoctorales)

Summary: We introduce the nonlinear dimensionality reduction problem known as Manifold Learning and present the diffusion maps algorithm (Coiffman and Lafon, 2006). Dif- fusion maps utilize the connectivity between data points through a diffusion process on the dataset. Additionally, we show some applications of this technique to 2D tomography reconstruction when the angles are unknown

Read More