Un enfoque desde la teoría espectral no autónoma para un problema de estabilidad asintótica global no uniforme: Caso triangular vía uniformización.
Abstract: En esta charla comenzaremos introduciendo la Conjetura de Markus-Yamabe en el contexto autónomo, la cual corresponde a un problema de estabilidad asintótica de ecuaciones diferenciales ordinarias. Luego, identificaremos los conceptos que necesitamos para establecer dicha conjetura en el contexto no autónomo, dando paso así al planteamiento de la conjetura en un contexto no autónomo. Adicionalmente, se mostrará que la conjetura es verificada para sistemas unidimensionales, para cierto tipo de sistemas no lineales y para una familia de sistemas triangulares superiores satisfaciendo...
Read MoreDistorsión en grupos de difeomorfismos.
Abstract: esta charla discutiremos el concepto de distorsión en grupos. Un elemento de un grupo finitamente generado se dice distorsionado si la métrica de la palabra de sus potencias crece sublineal. Comenzaremos dando una breve introducción, dando un par de ejemplos y luego daremos un par de aplicaciones. Terminaremos planteando y discutiendo una pregunta propuesta por Andrés Navas.
Read MoreNon-linear stability of hyperbolic collisionless many-particle systems.
Abstract: I will present upcoming non-linear stability results concerning the asymptotic behavior of solutions to classical models arising in kinetic theory. First, I will present an asymptotic stability result for the exterior of the Schwarzschild family of black holes as a solution to the Einstein–massless Vlasov system, assuming spherical symmetry. We exploit the normal hyperbolicity of the trapped set in the black hole exterior to obtain decay in time of the energy momentum tensor. I will also speak about an asymptotic stability result for small data solutions to the...
Read MoreBraiding groups of homeomorphisms of the Cantor set.
Abstract: In this talk we will discuss some recent work on groups which connect self-similar and Higman-Thompson groups to big mapping class groups via “braiding”. We will explain some results on the topological finiteness properties of the resulting groups, which are topological generalizations of the algebraic properties of being finitely generated and finitely presented. The talk will involve recent joint works with Xiaolei Wu (Fudan) and Matthew Zaremsky (Albany).
Read MoreMean equicontinuity – beyond minimality.
Abstract:: In this talk we present recent developments and new results in the study of mean equicontinuity and weak mean equicontinuity in the context of countable discrete amenable groups, such as a characterization in terms of spectral theory. It is known that the notions of mean eq. and weak mean eq. do not depend on the process of averaging (the Følner sequence), whenever the action is minimal, or the acting group is Abelian. However, we present an example of a (non-minimal, but transitive) action where mean equicontinuity and weak mean equicontinuity do depend on the process of...
Read MoreGroup actions with discrete spectrum and their amorphic complexity.
Abstract: Amorphic complexity, originally introduced for integer actions, is a topological invariant which measures the complexity of dynamical systems in the regime of zero entropy. We will introduce its definition for actions by locally compact sigma-compact amenable groups on compact metric spaces. Further, we will illustrate some of its basic properties and show why it is tailor-made to study strictly ergodic group actions with discrete spectrum and continuous eigenfunctions. This class of actions includes, in particular, Delone dynamical systems related to regular model sets obtained...
Read More



Noticias en español
