Conjugacy classes of germs near a hyperbolic fixed point in dimension 1.
RESUMEN: A famous linearization theorem of Sternberg claims that, in dimension 1, near a hyperbolic fixed point (i.e. a fixed point where the derivative differs from 1), a germ of C^r diffeomorphism is C^r conjugate to its linear part when r is greater than or equal to 2. This result fails to be true in lower regularity, even for C^1 diffeomorphisms with absolutely continuous derivative. We will explain how to construct whole continuous families of such germs with the same derivative at a common fixed point but which are not pairwise bi-Lipschitz conjugate, or which are pairwise bi-Lipschitz...
Read MoreGrupos Nilpotentes actuando en el intervalo.
RESUMEN: En esta charla vamos a estudiar las realizaciones de los grupos Nilpotentes como subgrupos del grupo de difeomorfismos del intervalo y presentar el siguiente problema: dado un grupo Nilpotente G, ¿Cuál es el parámetro óptimo r>0 para el cual G es un subgrupo del grupo de difeomorfismos de clase C^r del intervalo?, ¿Cuál es el vínculo entre r y la estructura algebraica de G? Si bien este problema está abierto en general vamos a ver respuestas parciales a estas preguntas.
Read MorePresión al infinito en shifts de Markov con alfabeto numerable.
RESUMEN: El principio variacional para la presión dice que la presión topológica es igual a el supremo de la presión de medidas invariantes. En analogía al principio variacional, definimos la presión al infinito, como el supremo de la presión de una sucesión de medidas que converge cero. En esta charla, hablaré de la presión al infinito para shifts de Markov numerables y potenciales uniformemente continuos. Discutiré algunas ideas generales y aplicaciones a la existencia de estados de equilibrio, medidas maximizantes y a resultados de gap dimensional.
Read MoreLímites a temperatura cero para cocientes de potenciales sobre un shift de Markov numerable.
Ver Pdf.
Read MoreEndomorfismos no uniformemente hiperbólicos.
RESUMEN: Voy a presentar ejemplos de endomorfismos del toro que son C^1 robustamente no uniformemente hiperbólicos. Además los ejemplos son establemente ergódicos, y los exponentes de Lyapunov son continuos con respecto al endomorfismo en la topología C^1.
Read MoreVariable polynomials and joint ergodicity for functions of polynomial growth.
RESUMEN: The ergodic theoretical proof of Szemerédi’s theorem on arithmetic progressions by Furstenberg, in 1977, led to a thorough study of multiple ergodic averages; which in turn gave numerous far-reaching extensions of Szemerédi’s result. More specifically, we have polynomial (Bergelson-Leibman, 1996) and Hardy field (Frantzikinakis-Wierdl, 2009, Frantzikinakis, 2015) extensions of the latter. In general, if the multiple average under consideration has the “expected limit”, then one obtains, via Furstenberg’s Correspondence Principle, combinatorial patterns in “large” subsets of...
Read More



Noticias en español
