ABSTRACT:
Un problema bastante general en teoría ergódica consiste en estudiar al conjunto de entropías de un sistema dinámico respecto a sus medidas ergódicas. Katok conjeturó que dicho conjunto contiene al intervalo $[0,h_{top}(f))$ en el caso de difeomorfismos suaves en variedades compactas. Si bien la conjetura permanece abierta, muchos avances se han logrado a la fecha. Se conoce, por ejemplo, que el flujo geodésico en variedades compactas a curvatura negativa verifica esta propiedad. La demostración de esto último recae en la realización del flujo geodésico como un flujo de suspensión sobre un shift de Markov de tipo finito.
En esta charla mostraremos que la tesis de la conjetura sigue siendo válida para el flujo geodésico sin la hipótesis de compacidad. Ante la ausencia de una realización simbólica genérica, las herramientas de la demostración serán puramente geométricas. Estas consisten en gran parte en el estudio del formalismo termodinámico del sistema, particularmente en los estados a temperatura nula. Este trabajo es un trabajo en curso junto a Anibal Velozo.
Venue: Sala 2, PUC (Av. Vicuña Mackenna 4860, Macul, La Florida, Región Metropolitana)
Speaker: Felipe Riquelme
Affiliation: PUCV
Coordinator: Prof. Cristobal Rivas
Posted on May 23, 2018 in Dynamical Systems, Seminars



Noticias en español
