On Kac’s model, ideal Thermostats, and finite Reservoirs

Abstract:

 

In 1956, Mark Kac introduced a stochastic model to derive a Boltzmann-like equation. Like the space-homogeneous Boltzmann’s  equation, Kac’s equation is ergodic with centered Gaussians as the  unique equilibrium state. In this talk, I will introduce Kac’s model, the thermostat used in [1] to guarantee exponentially fast convergence to equilibrium, and sketch the result in [2] how this infinite  thermostat can be approximated by a finite but large reservoir.

References:
[1]Bonetto, F., Loss, M.,Vaidyanathan, R.: J. Stat. Phys. 156(4), 647– 667 (2014)
[2]Bonetto F., Loss, M. Tossounian, H. Vaidyanathan, R. Comm. Math. Phys. 351 (2017)

Date: Dec 03, 2018 at 2018-12-03 17:00:00 h
Venue: Sala E214 del Depto de Ingeniería Electrica, ingreso por Calle Tupper o Beauchef 850.
Speaker: Hagop Toussounian
Affiliation: CMM-Universidad de Chile
Coordinator: Profesora Hanne Van Den Bosch
Abstract:
PDF

Posted on Nov 27, 2018 in CAPDE, Núcleo Modelos Estocásticos de Sistemas Complejos y Desordenados, Seminars