Entropías intermedias y temperatura nula en curvatura negativa
ABSTRACT: Un problema bastante general en teoría ergódica consiste en estudiar al conjunto de entropías de un sistema dinámico respecto a sus medidas ergódicas. Katok conjeturó que dicho conjunto contiene al intervalo $[0,h_{top}(f))$ en el caso de difeomorfismos suaves en variedades compactas. Si bien la conjetura permanece abierta, muchos avances se han logrado a la fecha. Se conoce, por ejemplo, que el flujo geodésico en variedades compactas a curvatura negativa verifica esta propiedad. La demostración de esto último recae en la realización del flujo geodésico como un flujo de...
Read MoreInvariant Random Subgroups of Full Groups of Bratteli diagrams
ABSTRACT: In the talk, we will classify the ergodic invariant random subgroups (IRS) of simple AF full groups. AF full groups arise as the transformation groups of Bratteli diagrams that preserve the cofinality of infinite paths in the diagram. AF full groups are complete (algebraic) invariants for the isomorphism of Bratteli diagrams. Given a simple AF full group G, we will prove that every ergodic IRS of G arises as the stabilizer distribution of a diagonal action on X^n for some n, where X is the path-space of the Bratteli diagram associated to G. This is joint work with Artem...
Read MoreLocal rules for planar tilings
ABSTRACT: The cut and project method is one of the prominent method to define quasiperiodic tilings. In order to model quasicrystals, where energetic interactions are only short range, it is important to know which of these tilings can be characterized by local configurations (in dynamical terms: which of these tiling spaces are of finite type or sofic). In this talk we shall review known results, in particular those obtained these last years with Nicolas Bedaride and Mathieu Sablik.
Read MoreCURTIS-HEDLUND-LYNDON THEOREM FOR ULTRAGRAPH SHIFT SPACES
ABSTRACT: In this work we characterize the class of continuous shift commuting maps between ultragraph shift spaces, proving a Curtis-Hedlund-Lyndon type theorem. Then we use it to characterize continuous, shift commuting, length preserving maps in terms of generalized sliding block codes. This is a joint work with Prof. Daniel Gon\c{c}alves (UFSC, Brazil)
Read MoreEquidistribution of dilated curves.
Resumen: Consider a light source located in a polynomial room. It is a classic question whether the whole room is illuminated by the light. This question was recently settled by Lelievre, Monteil and Weiss. In this talk, we study the variation on the illumination problem introduced by Chaika and Hubert in the context of closed curves on nilmanifolds. We give necessary and sufficient conditions for a nilmanifold being illuminated by a curve.
Read MoreQuantitative multiple recurrence for two and three transformations.
Abstract: In this talk I will provide some counter examples for quantitative multiple recurrence problems for systems with more than one transformation. For instance, I will show that there exists an ergodic system $(X,\mathcal{X},\mu,T_1,T_2)$ with two commuting transformations such that for every $\ell < 4$ there exists $A\in \mathcal{X}$ such that \[ \mu(A\cap T_1^n A\cap T_2^n A) < \mu(A)^{\ell} \] for every $n \in \mathbb{N}$. The construction of such a system is based on the study of “big” subsets of $\mathbb{N}^2$ and $\mathbb{N}^3$ satisfying...
Read More



Noticias en español
